Properties

Label 12.1
Order \( 2^{2} \cdot 3 \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\mathrm{Aut}(G)}$ \( 2^{2} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $7$
Trans deg. $12$
Rank $2$

Related objects

Downloads

Learn more

Group information

Description:$C_3:C_4$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism group:$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) (generators)
Outer automorphisms:$C_2$, of order \(2\)
Composition factors:$C_2$ x 2, $C_3$
Derived length:$2$

This group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Group statistics

Order 1 2 3 4 6
Elements 1 1 2 6 2 12
Conjugacy classes   1 1 1 2 1 6
Divisions 1 1 1 1 1 5
Autjugacy classes 1 1 1 1 1 5

Dimension 1 2
Irr. complex chars.   4 2 6
Irr. rational chars. 2 3 5

Minimal Presentations

Permutation degree:$7$
Transitive degree:$12$
Rank: $2$
Inequivalent generating pairs: $6$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 2 4 4
Arbitrary 2 4 4

Constructions

Groups of Lie type:$\CSOPlus(2,7)$, $\CSOMinus(2,5)$
Presentation: $\langle a, b \mid a^{4}=b^{3}=1, b^{a}=b^{2} \rangle$ Copy content Toggle raw display
Permutation group: $\langle(2,3)(4,5,6,7), (4,6)(5,7), (1,2,3)\rangle$ Copy content Toggle raw display
Matrix group:$\left\langle \left(\begin{array}{rrrr} 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 0 \end{array}\right) \right\rangle \subseteq \GL_{4}(\Z)$
$\left\langle \left(\begin{array}{rr} 4 & 3 \\ 1 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 1 \\ 3 & 3 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{5})$
Transitive group: 12T5 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $C_3$ $\,\rtimes\,$ $C_4$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_2$ . $S_3$ $C_6$ . $C_2$ more information

Elements of the group are displayed as words in the generators from the presentation given above.

Homology

Abelianization: $C_{4} $
Schur multiplier: $C_1$
Commutator length: $1$

Subgroups

There are 8 subgroups in 6 conjugacy classes, 5 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $S_3$
Commutator: $G' \simeq$ $C_3$ $G/G' \simeq$ $C_4$
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $S_3$
Fitting: $\operatorname{Fit} \simeq$ $C_6$ $G/\operatorname{Fit} \simeq$ $C_2$
Radical: $R \simeq$ $C_3:C_4$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_6$ $G/\operatorname{soc} \simeq$ $C_2$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_3:C_4$ $\rhd$ $C_3$ $\rhd$ $C_1$
Chief series $C_3:C_4$ $\rhd$ $C_6$ $\rhd$ $C_3$ $\rhd$ $C_1$
Lower central series $C_3:C_4$ $\rhd$ $C_3$
Upper central series $C_1$ $\lhd$ $C_2$

Supergroups

This group is a maximal subgroup of 115 larger groups in the database.

This group is a maximal quotient of 129 larger groups in the database.

Character theory

Complex character table

1A 2A 3A 4A1 4A-1 6A
Size 1 1 2 3 3 2
2 P 1A 1A 3A 2A 2A 3A
3 P 1A 2A 1A 4A-1 4A1 2A
Type
12.1.1a R 1 1 1 1 1 1
12.1.1b R 1 1 1 1 1 1
12.1.1c1 C 1 1 1 i i 1
12.1.1c2 C 1 1 1 i i 1
12.1.2a R 2 2 1 0 0 1
12.1.2b S 2 2 1 0 0 1

Rational character table

1A 2A 3A 4A 6A
Size 1 1 2 6 2
2 P 1A 1A 3A 2A 3A
3 P 1A 2A 1A 4A 2A
Schur
12.1.1a 1 1 1 1 1
12.1.1b 1 1 1 1 1
12.1.1c 2 2 2 0 2
12.1.2a 2 2 1 0 1
12.1.2b 2 2 2 1 0 1

Additional information

This group is sometimes referred to as $\widetilde{S}_3$ since it is the smallest nonsplit central extension of $S_3$. It is embeddable in $\GL_2(k)$ for any field of characteristic larger than $3$ (Serre, Finite Groups: An Introduction, exercise 10.3.2). The character 12.1.2b is an example of a character with Schur index larger than 1.