Properties

Label 133.1
Order \( 7 \cdot 19 \)
Exponent \( 7 \cdot 19 \)
Abelian yes
$\card{\operatorname{Aut}(G)}$ \( 2^{2} \cdot 3^{3} \)
Perm deg. $26$
Trans deg. $133$
Rank $1$

Related objects

Downloads

Learn more

Group information

Description:$C_{133}$
Order: \(133\)\(\medspace = 7 \cdot 19 \)
Exponent: \(133\)\(\medspace = 7 \cdot 19 \)
Automorphism group:$C_6\times C_{18}$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) (generators)
Outer automorphisms:$C_6\times C_{18}$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Composition factors:$C_7$, $C_{19}$
Nilpotency class:$1$
Derived length:$1$

This group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 7,19$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Group statistics

Order 1 7 19 133
Elements 1 6 18 108 133
Conjugacy classes   1 6 18 108 133
Divisions 1 1 1 1 4
Autjugacy classes 1 1 1 1 4

Dimension 1 6 18 108
Irr. complex chars.   133 0 0 0 133
Irr. rational chars. 1 1 1 1 4

Minimal Presentations

Permutation degree:$26$
Transitive degree:$133$
Rank: $1$
Inequivalent generators: $1$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 1 2 108
Arbitrary 1 2 24

Constructions

Presentation: $\langle a \mid a^{133}=1 \rangle$ Copy content Toggle raw display
Permutation group:Degree $26$ $\langle(1,7,6,5,4,3,2), (8,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9)\rangle$ Copy content Toggle raw display
Matrix group:$\left\langle \left(\begin{array}{rr} 27 & 39 \\ 13 & 27 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{113})$
Direct product: $C_7$ $\, \times\, $ $C_{19}$
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as words in the generators from the presentation given above.

Homology

Primary decomposition: $C_{7} \times C_{19}$
Schur multiplier: $C_1$
Commutator length: $0$

Subgroups

There are 4 subgroups, all normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{133}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{133}$
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_{133}$
Fitting: $\operatorname{Fit} \simeq$ $C_{133}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{133}$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_{133}$ $G/\operatorname{soc} \simeq$ $C_1$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
19-Sylow subgroup: $P_{ 19 } \simeq$ $C_{19}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_{133}$ $\rhd$ $C_1$
Chief series $C_{133}$ $\rhd$ $C_{19}$ $\rhd$ $C_1$
Lower central series $C_{133}$ $\rhd$ $C_1$
Upper central series $C_1$ $\lhd$ $C_{133}$

Supergroups

This group is a maximal subgroup of 15 larger groups in the database.

This group is a maximal quotient of 8 larger groups in the database.

Character theory

Complex character table

See the $133 \times 133$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

1A 7A 19A 133A
Size 1 6 18 108
7 P 1A 7A 19A 133A
19 P 1A 7A 19A 133A
133.1.1a 1 1 1 1
133.1.1b 6 1 6 1
133.1.1c 18 18 1 1
133.1.1d 108 18 6 1