Properties

Label 2.295.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $295$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(295\)\(\medspace = 5 \cdot 59 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.1475.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.295.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{-59})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - x^{2} + 5x - 5 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 8 + 52\cdot 79 + 39\cdot 79^{2} + 67\cdot 79^{3} + 43\cdot 79^{4} +O(79^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 33 + 51\cdot 79 + 68\cdot 79^{2} + 46\cdot 79^{3} + 78\cdot 79^{4} +O(79^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 42 + 61\cdot 79 + 62\cdot 79^{2} + 57\cdot 79^{3} + 26\cdot 79^{4} +O(79^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 76 + 71\cdot 79 + 65\cdot 79^{2} + 64\cdot 79^{3} + 8\cdot 79^{4} +O(79^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.