Properties

Label 4.4.1957.1-21.1-a1
Base field 4.4.1957.1
Conductor norm \( 21 \)
CM no
Base change no
Q-curve no
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.1957.1

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, -1, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{3}-3a-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a+1\right){x}^{2}+\left(2a^{3}-a^{2}-5a\right){x}+7a^{3}-2a^{2}-30a+11\)
sage: E = EllipticCurve([K([-1,0,1,0]),K([1,-2,-1,1]),K([-1,-3,0,1]),K([0,-5,-1,2]),K([11,-30,-2,7])])
 
gp: E = ellinit([Polrev([-1,0,1,0]),Polrev([1,-2,-1,1]),Polrev([-1,-3,0,1]),Polrev([0,-5,-1,2]),Polrev([11,-30,-2,7])], K);
 
magma: E := EllipticCurve([K![-1,0,1,0],K![1,-2,-1,1],K![-1,-3,0,1],K![0,-5,-1,2],K![11,-30,-2,7]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^3+a^2+7a)\) = \((a^3-4a)\cdot(a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-8a^3+18a^2+17a-33)\) = \((a^3-4a)^{6}\cdot(a^2-2)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -250047 \) = \(-3^{6}\cdot7^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{4584696391003}{250047} a^{3} - \frac{1823709580711}{250047} a^{2} + \frac{5875898465972}{83349} a + \frac{11577122282035}{250047} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/8\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(3 a^{3} - 2 a^{2} - 11 a + 5 : 12 a^{3} - 9 a^{2} - 43 a + 19 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1050.9857044715971661218194435100608311 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(8\)
Leading coefficient: \( 0.742422999880055 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-4a)\) \(3\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((a^2-2)\) \(7\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 21.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.