Properties

Label 4.4.1957.1-57.1-a2
Base field 4.4.1957.1
Conductor norm \( 57 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.1957.1

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, -1, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-1\right){x}{y}={x}^{3}+\left(-a^{3}+5a\right){x}^{2}+\left(-4a^{3}+8a-8\right){x}+12a^{3}-13a^{2}-54a+11\)
sage: E = EllipticCurve([K([-1,-1,1,0]),K([0,5,0,-1]),K([0,0,0,0]),K([-8,8,0,-4]),K([11,-54,-13,12])])
 
gp: E = ellinit([Polrev([-1,-1,1,0]),Polrev([0,5,0,-1]),Polrev([0,0,0,0]),Polrev([-8,8,0,-4]),Polrev([11,-54,-13,12])], K);
 
magma: E := EllipticCurve([K![-1,-1,1,0],K![0,5,0,-1],K![0,0,0,0],K![-8,8,0,-4],K![11,-54,-13,12]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-2a^2-3a+4)\) = \((a^3-4a)\cdot(a^3-a^2-4a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 57 \) = \(3\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((60a^3-107a^2-202a+210)\) = \((a^3-4a)^{2}\cdot(a^3-a^2-4a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 423412929 \) = \(3^{2}\cdot19^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{32864500283}{61731} a^{3} - \frac{638130530}{3249} a^{2} + \frac{41046464113}{20577} a + \frac{85760775575}{61731} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(2 a^{3} - 6 a : -a - 1 : 1\right)$ $\left(\frac{3}{2} a^{3} - \frac{3}{4} a^{2} - \frac{23}{4} a : \frac{1}{4} a^{3} + \frac{1}{2} a^{2} - a - \frac{9}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 193.82890213315901207399457742346590574 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 1.09537577436418 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-4a)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a^3-a^2-4a)\) \(19\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 57.1-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.