Properties

Label 4.4.2225.1-16.1-a3
Base field 4.4.2225.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 18 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2225.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 2 x + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([4, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{3}{2}a-3\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{5}{2}a-2\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a^{3}+2a^{2}+4a-4\right){x}+a^{3}-2a^{2}-3a+7\)
sage: E = EllipticCurve([K([-3,-3/2,1/2,1/2]),K([-1,1,0,0]),K([-2,-5/2,1/2,1/2]),K([-4,4,2,-1]),K([7,-3,-2,1])])
 
gp: E = ellinit([Polrev([-3,-3/2,1/2,1/2]),Polrev([-1,1,0,0]),Polrev([-2,-5/2,1/2,1/2]),Polrev([-4,4,2,-1]),Polrev([7,-3,-2,1])], K);
 
magma: E := EllipticCurve([K![-3,-3/2,1/2,1/2],K![-1,1,0,0],K![-2,-5/2,1/2,1/2],K![-4,4,2,-1],K![7,-3,-2,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((-a)\cdot(-1/2a^3+1/2a^2+5/2a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(4\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((8a^2-16a-32)\) = \((-a)^{6}\cdot(-1/2a^3+1/2a^2+5/2a-1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 262144 \) = \(4^{6}\cdot4^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{546880529}{128} a^{3} - \frac{995601459}{128} a^{2} - \frac{1917966475}{128} a + \frac{666851395}{32} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/18\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{13}{2} a^{3} - \frac{3}{2} a^{2} + \frac{63}{2} a + 25 : -\frac{119}{2} a^{3} - \frac{17}{2} a^{2} + \frac{577}{2} a + 211 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 955.67044619956034405143818052145199188 \)
Tamagawa product: \( 18 \)  =  \(( 2 \cdot 3 )\cdot3\)
Torsion order: \(18\)
Leading coefficient: \( 1.12556516328474 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(4\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-1/2a^3+1/2a^2+5/2a-1)\) \(4\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 6, 9 and 18.
Its isogeny class 16.1-a consists of curves linked by isogenies of degrees dividing 18.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.