Properties

Label 4.4.2225.1-29.2-a2
Base field 4.4.2225.1
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2225.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 2 x + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([4, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{5}{2}a-3\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{5}{2}a-2\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{5}{2}a\right){x}^{2}+\left(5a^{3}-25a-17\right){x}+13a^{3}+2a^{2}-62a-45\)
sage: E = EllipticCurve([K([-3,-5/2,1/2,1/2]),K([0,-5/2,-1/2,1/2]),K([-2,-5/2,1/2,1/2]),K([-17,-25,0,5]),K([-45,-62,2,13])])
 
gp: E = ellinit([Polrev([-3,-5/2,1/2,1/2]),Polrev([0,-5/2,-1/2,1/2]),Polrev([-2,-5/2,1/2,1/2]),Polrev([-17,-25,0,5]),Polrev([-45,-62,2,13])], K);
 
magma: E := EllipticCurve([K![-3,-5/2,1/2,1/2],K![0,-5/2,-1/2,1/2],K![-2,-5/2,1/2,1/2],K![-17,-25,0,5],K![-45,-62,2,13]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-5)\) = \((a^2-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29 \) = \(29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^3+4a^2+6a-5)\) = \((a^2-5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 841 \) = \(29^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{176483079}{841} a^{3} + \frac{478215419}{841} a^{2} + \frac{40825114}{841} a - \frac{381703735}{841} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{1}{2} a^{3} + \frac{1}{2} a^{2} - \frac{5}{2} a - 3 : a^{3} - 5 a - 4 : 1\right)$ $\left(\frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{17}{8} a - \frac{3}{2} : \frac{7}{8} a^{3} - 4 a - \frac{23}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 577.80066295441714626101939027203390666 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 1.53116869449488 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-5)\) \(29\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 29.2-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.