Properties

Label 5.5.24217.1-23.1-a1
Base field 5.5.24217.1
Conductor norm \( 23 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{4}+a^{3}+5a^{2}-2a-3\right){x}{y}={x}^{3}+\left(-3a^{4}+a^{3}+15a^{2}-2a-8\right){x}^{2}+\left(-2a^{4}+2a^{3}+10a^{2}-2a-6\right){x}+17a^{4}-6a^{3}-81a^{2}+13a+45\)
sage: E = EllipticCurve([K([-3,-2,5,1,-1]),K([-8,-2,15,1,-3]),K([0,0,0,0,0]),K([-6,-2,10,2,-2]),K([45,13,-81,-6,17])])
 
gp: E = ellinit([Polrev([-3,-2,5,1,-1]),Polrev([-8,-2,15,1,-3]),Polrev([0,0,0,0,0]),Polrev([-6,-2,10,2,-2]),Polrev([45,13,-81,-6,17])], K);
 
magma: E := EllipticCurve([K![-3,-2,5,1,-1],K![-8,-2,15,1,-3],K![0,0,0,0,0],K![-6,-2,10,2,-2],K![45,13,-81,-6,17]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a)\) = \((a^3-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 23 \) = \(23\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^4-2a^3-17a^2+4a+6)\) = \((a^3-3a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -529 \) = \(-23^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2370155}{529} a^{4} + \frac{9772390}{529} a^{3} - \frac{30902810}{529} a^{2} - \frac{40834965}{529} a - \frac{14158252}{529} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-6 a^{4} + 5 a^{3} + 26 a^{2} - 17 a - 5 : -30 a^{4} + 23 a^{3} + 134 a^{2} - 73 a - 37 : 1\right)$
Height \(0.00065557609631294353761010235442956723507\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.00065557609631294353761010235442956723507 \)
Period: \( 29464.428972202316895788878653096550926 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.24125488 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a)\) \(23\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 23.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.