Properties

Label 5.5.70601.1-29.1-a2
Base field 5.5.70601.1
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 7 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-2a^{3}-9a^{2}+3a+3\right){x}{y}+\left(2a^{4}-a^{3}-10a^{2}+3\right){y}={x}^{3}+\left(2a^{4}-2a^{3}-9a^{2}+2a+1\right){x}^{2}+\left(a^{4}-2a^{3}-4a^{2}+6a+1\right){x}+a^{4}-6a^{2}-3a+2\)
sage: E = EllipticCurve([K([3,3,-9,-2,2]),K([1,2,-9,-2,2]),K([3,0,-10,-1,2]),K([1,6,-4,-2,1]),K([2,-3,-6,0,1])])
 
gp: E = ellinit([Polrev([3,3,-9,-2,2]),Polrev([1,2,-9,-2,2]),Polrev([3,0,-10,-1,2]),Polrev([1,6,-4,-2,1]),Polrev([2,-3,-6,0,1])], K);
 
magma: E := EllipticCurve([K![3,3,-9,-2,2],K![1,2,-9,-2,2],K![3,0,-10,-1,2],K![1,6,-4,-2,1],K![2,-3,-6,0,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^4-2a^3-9a^2+2a+3)\) = \((2a^4-2a^3-9a^2+2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29 \) = \(29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4-2a^3-9a^2+2a+3)\) = \((2a^4-2a^3-9a^2+2a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 29 \) = \(29\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{455575}{29} a^{4} - \frac{100246}{29} a^{3} - \frac{2321756}{29} a^{2} - \frac{953052}{29} a + \frac{566128}{29} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/7\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(1 : -a^{4} + a^{3} + 4 a^{2} - 2 a + 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 10263.912461398774300570604263264257039 \)
Tamagawa product: \( 1 \)
Torsion order: \(7\)
Leading coefficient: \( 0.788336134 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^4-2a^3-9a^2+2a+3)\) \(29\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 29.1-a consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.