Properties

Label 5.5.70601.1-47.2-c1
Base field 5.5.70601.1
Conductor norm \( 47 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(3a^{4}-2a^{3}-15a^{2}+2a+5\right){x}{y}+{y}={x}^{3}+\left(3a^{4}-2a^{3}-15a^{2}+a+5\right){x}^{2}+\left(8a^{4}-5a^{3}-41a^{2}-a+23\right){x}+4a^{4}-4a^{3}-21a^{2}+8a+17\)
sage: E = EllipticCurve([K([5,2,-15,-2,3]),K([5,1,-15,-2,3]),K([1,0,0,0,0]),K([23,-1,-41,-5,8]),K([17,8,-21,-4,4])])
 
gp: E = ellinit([Polrev([5,2,-15,-2,3]),Polrev([5,1,-15,-2,3]),Polrev([1,0,0,0,0]),Polrev([23,-1,-41,-5,8]),Polrev([17,8,-21,-4,4])], K);
 
magma: E := EllipticCurve([K![5,2,-15,-2,3],K![5,1,-15,-2,3],K![1,0,0,0,0],K![23,-1,-41,-5,8],K![17,8,-21,-4,4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+a^3+6a^2-2)\) = \((-a^4+a^3+6a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 47 \) = \(47\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-a^2-4a-1)\) = \((-a^4+a^3+6a^2-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -47 \) = \(-47\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{87216945}{47} a^{4} - \frac{132154029}{47} a^{3} + \frac{104407562}{47} a^{2} + \frac{90132064}{47} a - \frac{34286979}{47} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{4} + 6 a^{2} + 2 a - 4 : 3 a^{4} - 3 a^{3} - 14 a^{2} + 5 a + 5 : 1\right)$
Height \(0.010452360645316413045283151786239901664\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.010452360645316413045283151786239901664 \)
Period: \( 11112.373637735230111852015989680274128 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.18567608 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+6a^2-2)\) \(47\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 47.2-c consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.