Properties

Label 5.5.70601.1-49.1-a2
Base field 5.5.70601.1
Conductor norm \( 49 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(3a^{4}-2a^{3}-15a^{2}+a+5\right){x}{y}+\left(3a^{4}-2a^{3}-15a^{2}+a+5\right){y}={x}^{3}+\left(-3a^{4}+2a^{3}+15a^{2}-6\right){x}^{2}+\left(-2a^{4}+a^{3}+8a^{2}+3a+3\right){x}-11a^{4}+7a^{3}+56a^{2}+a-26\)
sage: E = EllipticCurve([K([5,1,-15,-2,3]),K([-6,0,15,2,-3]),K([5,1,-15,-2,3]),K([3,3,8,1,-2]),K([-26,1,56,7,-11])])
 
gp: E = ellinit([Polrev([5,1,-15,-2,3]),Polrev([-6,0,15,2,-3]),Polrev([5,1,-15,-2,3]),Polrev([3,3,8,1,-2]),Polrev([-26,1,56,7,-11])], K);
 
magma: E := EllipticCurve([K![5,1,-15,-2,3],K![-6,0,15,2,-3],K![5,1,-15,-2,3],K![3,3,8,1,-2],K![-26,1,56,7,-11]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-5a^2+3a+2)\) = \((-a^4+6a^2+2a-4)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 49 \) = \(7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^4+7a^3+21a^2-33a-16)\) = \((-a^4+6a^2+2a-4)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5764801 \) = \(-7^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{392767}{49} a^{4} + \frac{404875}{49} a^{3} - \frac{2995121}{49} a^{2} - \frac{227585}{7} a + \frac{856140}{49} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 273.48172823831008147497246538935382366 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 2.05850954 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+6a^2+2a-4)\) \(7\) \(2\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 49.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.