Properties

Label 5.5.70601.1-9.1-c4
Base field 5.5.70601.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-2a^{3}-9a^{2}+4a+3\right){x}{y}+\left(3a^{4}-2a^{3}-15a^{2}+2a+6\right){y}={x}^{3}+\left(a^{4}-2a^{3}-3a^{2}+6a-1\right){x}^{2}+\left(8a^{4}-45a^{2}-16a+5\right){x}+1359a^{4}-262a^{3}-6993a^{2}-2955a+1668\)
sage: E = EllipticCurve([K([3,4,-9,-2,2]),K([-1,6,-3,-2,1]),K([6,2,-15,-2,3]),K([5,-16,-45,0,8]),K([1668,-2955,-6993,-262,1359])])
 
gp: E = ellinit([Polrev([3,4,-9,-2,2]),Polrev([-1,6,-3,-2,1]),Polrev([6,2,-15,-2,3]),Polrev([5,-16,-45,0,8]),Polrev([1668,-2955,-6993,-262,1359])], K);
 
magma: E := EllipticCurve([K![3,4,-9,-2,2],K![-1,6,-3,-2,1],K![6,2,-15,-2,3],K![5,-16,-45,0,8],K![1668,-2955,-6993,-262,1359]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+4a)\) = \((-a^3+a^2+4a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^4-5a^2+5a-12)\) = \((-a^3+a^2+4a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -531441 \) = \(-9^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3600304971482332529}{729} a^{4} - \frac{2439850098107900843}{729} a^{3} - \frac{18787940441387297450}{729} a^{2} + \frac{1144857105745347907}{729} a + \frac{11169926711558310001}{729} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-24 a^{4} - 5 a^{3} + 144 a^{2} + 66 a - 37 : 311 a^{4} - 159 a^{3} - 1402 a^{2} - 521 a + 315 : 1\right)$
Height \(0.45959106445893860345141514399421577957\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{21}{4} a^{4} + a^{3} + \frac{55}{2} a^{2} + 10 a - \frac{29}{4} : -\frac{5}{8} a^{4} + \frac{7}{8} a^{3} + 3 a^{2} - \frac{11}{4} a : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.45959106445893860345141514399421577957 \)
Period: \( 440.82733562418453148496177397707283910 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.90622726 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(9\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.