Properties

Label 5.5.81509.1-2.1-b4
Base field 5.5.81509.1
Conductor norm \( 2 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.81509.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 3 x^{2} + 5 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 5, 3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-2, 5, 3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 5, 3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{4}-a^{3}-4a^{2}+3a+3\right){y}={x}^{3}+\left(-a^{2}-a+2\right){x}^{2}+\left(13a^{4}+2a^{3}-58a^{2}-36a+18\right){x}-63a^{4}+24a^{3}+242a^{2}+91a-70\)
sage: E = EllipticCurve([K([1,0,0,0,0]),K([2,-1,-1,0,0]),K([3,3,-4,-1,1]),K([18,-36,-58,2,13]),K([-70,91,242,24,-63])])
 
gp: E = ellinit([Polrev([1,0,0,0,0]),Polrev([2,-1,-1,0,0]),Polrev([3,3,-4,-1,1]),Polrev([18,-36,-58,2,13]),Polrev([-70,91,242,24,-63])], K);
 
magma: E := EllipticCurve([K![1,0,0,0,0],K![2,-1,-1,0,0],K![3,3,-4,-1,1],K![18,-36,-58,2,13],K![-70,91,242,24,-63]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2)\) = \((a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2 \) = \(2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^4+a^3+4a^2-a-2)\) = \((a^2-2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16 \) = \(2^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{48597558931232101}{16} a^{4} - \frac{30574429654392887}{16} a^{3} - \frac{254326777735306691}{16} a^{2} + \frac{51471799486964365}{16} a + \frac{262076878907551607}{16} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{4} - 5 a^{3} + 4 a^{2} + 8 a - 3 : 12 a^{4} - 29 a^{3} - 10 a^{2} + 37 a - 13 : 1\right)$
Height \(0.037647910388547916105828689518229986382\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{9}{4} a^{4} - \frac{3}{4} a^{3} - \frac{35}{4} a^{2} - \frac{11}{4} a + \frac{5}{2} : -\frac{13}{8} a^{4} + \frac{7}{8} a^{3} + \frac{51}{8} a^{2} - \frac{1}{8} a - \frac{11}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.037647910388547916105828689518229986382 \)
Period: \( 3135.0641243308549080206152194242365954 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.03353343 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-2)\) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 2.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.