Properties

Label 5.5.81509.1-9.1-a1
Base field 5.5.81509.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.81509.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 3 x^{2} + 5 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 5, 3, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-2, 5, 3, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 5, 3, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-3a+2\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+2a+3\right){y}={x}^{3}+\left(-a^{4}+5a^{2}+a-4\right){x}^{2}+\left(-a^{4}+2a^{3}+a^{2}-2a+2\right){x}-2a^{3}+4a^{2}+3a-5\)
sage: E = EllipticCurve([K([2,-3,-1,1,0]),K([-4,1,5,0,-1]),K([3,2,-4,-1,1]),K([2,-2,1,2,-1]),K([-5,3,4,-2,0])])
 
gp: E = ellinit([Polrev([2,-3,-1,1,0]),Polrev([-4,1,5,0,-1]),Polrev([3,2,-4,-1,1]),Polrev([2,-2,1,2,-1]),Polrev([-5,3,4,-2,0])], K);
 
magma: E := EllipticCurve([K![2,-3,-1,1,0],K![-4,1,5,0,-1],K![3,2,-4,-1,1],K![2,-2,1,2,-1],K![-5,3,4,-2,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-1)\) = \((a^2-a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^2+a+1)\) = \((a^2-a-1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -9 \) = \(-9\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -53060 a^{4} + \frac{432928}{3} a^{3} + 15463 a^{2} - \frac{565285}{3} a + \frac{188426}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} - a^{2} - 4 a + 3 : -a^{4} + 2 a^{3} + 3 a^{2} - 6 a : 1\right)$
Height \(0.0053535046239124893469020718371728636340\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0053535046239124893469020718371728636340 \)
Period: \( 18888.185724521271011073835923308402105 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.77090657 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-a-1)\) \(9\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 9.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.