Properties

Label 6.6.300125.1-71.3-b1
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-6a^{5}+a^{4}+44a^{3}+23a^{2}-28a-10\right){x}{y}+\left(-5a^{5}+a^{4}+37a^{3}+18a^{2}-26a-7\right){y}={x}^{3}+\left(3a^{5}-a^{4}-21a^{3}-8a^{2}+12a+3\right){x}^{2}+\left(-82a^{5}+24a^{4}+591a^{3}+257a^{2}-391a-116\right){x}+161a^{5}-45a^{4}-1160a^{3}-509a^{2}+769a+227\)
sage: E = EllipticCurve([K([-10,-28,23,44,1,-6]),K([3,12,-8,-21,-1,3]),K([-7,-26,18,37,1,-5]),K([-116,-391,257,591,24,-82]),K([227,769,-509,-1160,-45,161])])
 
gp: E = ellinit([Polrev([-10,-28,23,44,1,-6]),Polrev([3,12,-8,-21,-1,3]),Polrev([-7,-26,18,37,1,-5]),Polrev([-116,-391,257,591,24,-82]),Polrev([227,769,-509,-1160,-45,161])], K);
 
magma: E := EllipticCurve([K![-10,-28,23,44,1,-6],K![3,12,-8,-21,-1,3],K![-7,-26,18,37,1,-5],K![-116,-391,257,591,24,-82],K![227,769,-509,-1160,-45,161]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+a^4+7a^3-2a^2-7a)\) = \((-a^5+a^4+7a^3-2a^2-7a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-6a^5-a^4+45a^3+36a^2-23a-15)\) = \((-a^5+a^4+7a^3-2a^2-7a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5041 \) = \(-71^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2806479973455}{5041} a^{5} + \frac{1209517831721}{5041} a^{4} + \frac{19764644332781}{5041} a^{3} + \frac{6136368206763}{5041} a^{2} - \frac{178823365318}{71} a - \frac{1119026433909}{5041} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a^{5} - 15 a^{3} - 10 a^{2} + 11 a + 6 : 12 a^{5} - 2 a^{4} - 87 a^{3} - 47 a^{2} + 55 a + 22 : 1\right)$
Height \(0.0060775655434875208948068184142481340551\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{9}{4} a^{5} - \frac{1}{2} a^{4} - \frac{67}{4} a^{3} - \frac{33}{4} a^{2} + \frac{51}{4} a + \frac{9}{2} : \frac{101}{8} a^{5} - \frac{13}{4} a^{4} - 91 a^{3} - \frac{335}{8} a^{2} + \frac{237}{4} a + \frac{71}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0060775655434875208948068184142481340551 \)
Period: \( 66963.547141587985708763348767015196595 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.22863 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+a^4+7a^3-2a^2-7a)\) \(71\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 71.3-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.