Properties

Label 6.6.371293.1-64.1-b2
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 64 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 7 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}+a^{4}-4a^{3}-3a^{2}+3a\right){x}{y}+\left(a^{5}+a^{4}-5a^{3}-3a^{2}+5a+1\right){y}={x}^{3}+\left(a^{5}+a^{4}-5a^{3}-4a^{2}+5a+2\right){x}^{2}+\left(a^{5}+2a^{4}-a^{3}-a^{2}+3a+1\right){x}-20a^{5}-7a^{4}+93a^{3}+50a^{2}-52a-14\)
sage: E = EllipticCurve([K([0,3,-3,-4,1,1]),K([2,5,-4,-5,1,1]),K([1,5,-3,-5,1,1]),K([1,3,-1,-1,2,1]),K([-14,-52,50,93,-7,-20])])
 
gp: E = ellinit([Polrev([0,3,-3,-4,1,1]),Polrev([2,5,-4,-5,1,1]),Polrev([1,5,-3,-5,1,1]),Polrev([1,3,-1,-1,2,1]),Polrev([-14,-52,50,93,-7,-20])], K);
 
magma: E := EllipticCurve([K![0,3,-3,-4,1,1],K![2,5,-4,-5,1,1],K![1,5,-3,-5,1,1],K![1,3,-1,-1,2,1],K![-14,-52,50,93,-7,-20]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 64 \) = \(64\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4)\) = \((2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(64^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{351}{4} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{4} + 3 a^{2} - a : 2 a^{5} + 3 a^{4} - 7 a^{3} - 10 a^{2} + 2 a + 2 : 1\right)$
Height \(0.16981435127840786675757737391447202240\)
Torsion structure: \(\Z/7\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{2} - a + 1 : 3 a^{5} + 2 a^{4} - 11 a^{3} - 8 a^{2} + 5 a + 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.16981435127840786675757737391447202240 \)
Period: \( 36850.572209580007121685212569502764530 \)
Tamagawa product: \( 2 \)
Torsion order: \(7\)
Leading coefficient: \( 2.51505 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(64\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 64.1-b consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 5 elliptic curves:

Base field Curve
\(\Q\) 338.c2
\(\Q\) 338.e2
\(\Q(\sqrt{13}) \) 2.2.13.1-676.1-b2
3.3.169.1 a curve with conductor norm 1352 (not in the database)
3.3.169.1 3.3.169.1-8.1-a2