Properties

Label 6.6.485125.1-31.1-a8
Base field 6.6.485125.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+3a^{4}+9a^{3}-10a^{2}-8a+3\right){x}{y}={x}^{3}+\left(-a^{5}+5a^{3}+a^{2}-5a-1\right){x}^{2}+\left(-10a^{5}+40a^{4}+45a^{3}-165a^{2}-45a+16\right){x}+6a^{5}+153a^{4}-31a^{3}-678a^{2}-36a+57\)
sage: E = EllipticCurve([K([3,-8,-10,9,3,-2]),K([-1,-5,1,5,0,-1]),K([0,0,0,0,0,0]),K([16,-45,-165,45,40,-10]),K([57,-36,-678,-31,153,6])])
 
gp: E = ellinit([Polrev([3,-8,-10,9,3,-2]),Polrev([-1,-5,1,5,0,-1]),Polrev([0,0,0,0,0,0]),Polrev([16,-45,-165,45,40,-10]),Polrev([57,-36,-678,-31,153,6])], K);
 
magma: E := EllipticCurve([K![3,-8,-10,9,3,-2],K![-1,-5,1,5,0,-1],K![0,0,0,0,0,0],K![16,-45,-165,45,40,-10],K![57,-36,-678,-31,153,6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^5-3a^4-8a^3+10a^2+5a-4)\) = \((2a^5-3a^4-8a^3+10a^2+5a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5a^5+2a^4+23a^3-9a^2-14a+14)\) = \((2a^5-3a^4-8a^3+10a^2+5a-4)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 923521 \) = \(31^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{161977561667364262506242}{923521} a^{5} - \frac{474485436612723225705736}{923521} a^{4} - \frac{206957557465744779382665}{923521} a^{3} + \frac{1488151984849774698530977}{923521} a^{2} - \frac{1059026459496257469864311}{923521} a + \frac{174295328969264546943196}{923521} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(4 a^{5} - 2 a^{4} - 22 a^{3} + 8 a^{2} + 24 a - 4 : 6 a^{5} - 9 a^{4} - 30 a^{3} + 31 a^{2} + 37 a - 11 : 1\right)$ $\left(-\frac{1}{2} a^{5} + 2 a^{4} + \frac{9}{4} a^{3} - \frac{33}{4} a^{2} - \frac{9}{4} a - 1 : -\frac{11}{2} a^{5} + \frac{61}{8} a^{4} + \frac{195}{8} a^{3} - \frac{99}{4} a^{2} - \frac{83}{4} a + \frac{27}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 128.22411058557222545711490789805868112 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 1.47276 \)
Analytic order of Ш: \( 64 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^5-3a^4-8a^3+10a^2+5a-4)\) \(31\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 31.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.