Properties

Label 6.6.485125.1-49.1-a2
Base field 6.6.485125.1
Conductor norm \( 49 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-1\right){x}{y}+\left(-a^{5}+2a^{4}+4a^{3}-7a^{2}-3a+4\right){y}={x}^{3}+\left(2a^{5}-3a^{4}-8a^{3}+10a^{2}+6a-3\right){x}^{2}+\left(-6a^{5}+2a^{4}+42a^{3}+5a^{2}-71a-40\right){x}+11a^{5}+11a^{4}-89a^{3}-91a^{2}+157a+153\)
sage: E = EllipticCurve([K([-1,1,1,0,0,0]),K([-3,6,10,-8,-3,2]),K([4,-3,-7,4,2,-1]),K([-40,-71,5,42,2,-6]),K([153,157,-91,-89,11,11])])
 
gp: E = ellinit([Polrev([-1,1,1,0,0,0]),Polrev([-3,6,10,-8,-3,2]),Polrev([4,-3,-7,4,2,-1]),Polrev([-40,-71,5,42,2,-6]),Polrev([153,157,-91,-89,11,11])], K);
 
magma: E := EllipticCurve([K![-1,1,1,0,0,0],K![-3,6,10,-8,-3,2],K![4,-3,-7,4,2,-1],K![-40,-71,5,42,2,-6],K![153,157,-91,-89,11,11]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+3a^4+10a^3-12a^2-11a+6)\) = \((-2a^5+3a^4+10a^3-12a^2-11a+6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 49 \) = \(49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5a^5+6a^4+22a^3-20a^2-17a+8)\) = \((-2a^5+3a^4+10a^3-12a^2-11a+6)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -2401 \) = \(-49^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{44682954498275}{49} a^{5} + \frac{20731677864676}{49} a^{4} + \frac{214541279828608}{49} a^{3} - \frac{20858262562702}{49} a^{2} - \frac{124233907036096}{49} a + \frac{28389749219352}{49} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-6 a^{5} + \frac{35}{4} a^{4} + \frac{55}{2} a^{3} - \frac{127}{4} a^{2} - \frac{55}{2} a + \frac{51}{4} : \frac{5}{8} a^{5} - \frac{13}{8} a^{3} + \frac{3}{4} a^{2} + \frac{3}{2} a - \frac{1}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2329.3641775987155325503979334636668359 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.67217 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+3a^4+10a^3-12a^2-11a+6)\) \(49\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 49.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.