Properties

Label 6.6.485125.1-64.1-a1
Base field 6.6.485125.1
Conductor norm \( 64 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-3a^{2}+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a^{5}+5a^{3}-5a\right){x}^{2}+\left(a^{5}-3a^{3}-a^{2}+2a+1\right){x}+2a^{5}-7a^{3}+4a-1\)
sage: E = EllipticCurve([K([1,0,-3,0,1,0]),K([0,-5,0,5,0,-1]),K([-1,0,1,0,0,0]),K([1,2,-1,-3,0,1]),K([-1,4,0,-7,0,2])])
 
gp: E = ellinit([Polrev([1,0,-3,0,1,0]),Polrev([0,-5,0,5,0,-1]),Polrev([-1,0,1,0,0,0]),Polrev([1,2,-1,-3,0,1]),Polrev([-1,4,0,-7,0,2])], K);
 
magma: E := EllipticCurve([K![1,0,-3,0,1,0],K![0,-5,0,5,0,-1],K![-1,0,1,0,0,0],K![1,2,-1,-3,0,1],K![-1,4,0,-7,0,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 64 \) = \(64\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2)\) = \((2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -64 \) = \(-64\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{11449}{2} a^{5} + \frac{41601}{2} a^{4} - 12323 a^{3} - \frac{41173}{2} a^{2} + \frac{35495}{2} a - 2524 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{2} + 2 : 2 a^{5} - 2 a^{4} - 9 a^{3} + 8 a^{2} + 8 a - 5 : 1\right)$
Height \(0.023351260574944573795664126346906697243\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.023351260574944573795664126346906697243 \)
Period: \( 13990.337260106950258133421748028974557 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.81425 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(64\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 64.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.