Properties

Label 6.6.485125.1-9.1-a3
Base field 6.6.485125.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+3a^{4}+9a^{3}-10a^{2}-8a+3\right){x}{y}+\left(a^{5}-a^{4}-5a^{3}+4a^{2}+6a-1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a\right){x}^{2}+\left(2a^{5}+6a^{4}-30a^{3}-14a^{2}+73a-17\right){x}-567a^{5}+1666a^{4}+714a^{3}-5224a^{2}+3738a-617\)
sage: E = EllipticCurve([K([3,-8,-10,9,3,-2]),K([0,3,1,-1,0,0]),K([-1,6,4,-5,-1,1]),K([-17,73,-14,-30,6,2]),K([-617,3738,-5224,714,1666,-567])])
 
gp: E = ellinit([Polrev([3,-8,-10,9,3,-2]),Polrev([0,3,1,-1,0,0]),Polrev([-1,6,4,-5,-1,1]),Polrev([-17,73,-14,-30,6,2]),Polrev([-617,3738,-5224,714,1666,-567])], K);
 
magma: E := EllipticCurve([K![3,-8,-10,9,3,-2],K![0,3,1,-1,0,0],K![-1,6,4,-5,-1,1],K![-17,73,-14,-30,6,2],K![-617,3738,-5224,714,1666,-567]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2)\) = \((a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-26a^5+48a^4+115a^3-168a^2-114a+57)\) = \((a^2-2)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 387420489 \) = \(9^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{303931426918868}{19683} a^{5} + \frac{533746013413469}{19683} a^{4} + \frac{1345884677763131}{19683} a^{3} - \frac{2103242860788349}{19683} a^{2} - \frac{1120757691792739}{19683} a + \frac{1246346911943323}{19683} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{5} - 4 a^{4} + a^{3} + 12 a^{2} - 14 a + 2 : -a^{5} - a^{4} + 10 a^{3} + 2 a^{2} - 22 a + 5 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2710.6454450864199277659696020680636269 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 0.972940 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-2)\) \(9\) \(1\) \(I_{9}\) Non-split multiplicative \(1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.