Properties

Label 6.6.592661.1-31.1-b2
Base field 6.6.592661.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-5a^{3}+5a^{2}+4a-4\right){x}{y}+\left(a^{5}-4a^{3}+a-1\right){y}={x}^{3}+\left(-a^{5}+2a^{4}+5a^{3}-9a^{2}-5a+6\right){x}^{2}+\left(-18a^{5}+35a^{4}+48a^{3}-86a^{2}-25a+31\right){x}-51a^{5}+152a^{4}-32a^{3}-169a^{2}+64a+14\)
sage: E = EllipticCurve([K([-4,4,5,-5,-1,1]),K([6,-5,-9,5,2,-1]),K([-1,1,0,-4,0,1]),K([31,-25,-86,48,35,-18]),K([14,64,-169,-32,152,-51])])
 
gp: E = ellinit([Polrev([-4,4,5,-5,-1,1]),Polrev([6,-5,-9,5,2,-1]),Polrev([-1,1,0,-4,0,1]),Polrev([31,-25,-86,48,35,-18]),Polrev([14,64,-169,-32,152,-51])], K);
 
magma: E := EllipticCurve([K![-4,4,5,-5,-1,1],K![6,-5,-9,5,2,-1],K![-1,1,0,-4,0,1],K![31,-25,-86,48,35,-18],K![14,64,-169,-32,152,-51]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+5a^3-5a+1)\) = \((-a^5+5a^3-5a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^5-2a^4-15a^3+6a^2+14a-1)\) = \((-a^5+5a^3-5a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -961 \) = \(-31^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{139573028727470950776}{961} a^{5} + \frac{146091909064081505603}{961} a^{4} - \frac{398857975268896914941}{961} a^{3} - \frac{258052846331700559100}{961} a^{2} + \frac{5474415068525499730}{31} a + \frac{68193984513407074549}{961} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{2} a^{5} - 4 a^{4} - \frac{39}{4} a^{3} + 15 a^{2} + 4 a - \frac{27}{4} : 4 a^{5} - 6 a^{4} - \frac{151}{8} a^{3} + \frac{105}{4} a^{2} + \frac{49}{4} a - 13 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2500.6071233083976628084739470829728988 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.62410 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+5a^3-5a+1)\) \(31\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 31.1-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.