Properties

Label 6.6.592661.1-47.1-b4
Base field 6.6.592661.1
Conductor norm \( 47 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-5a^{3}+4a^{2}+5a-1\right){x}{y}+\left(a^{5}-a^{4}-5a^{3}+5a^{2}+4a-3\right){y}={x}^{3}+\left(a^{5}-2a^{4}-4a^{3}+9a^{2}-4\right){x}^{2}+\left(-19a^{5}+38a^{4}+85a^{3}-167a^{2}-8a+12\right){x}-105a^{5}+197a^{4}+473a^{3}-942a^{2}+53a+129\)
sage: E = EllipticCurve([K([-1,5,4,-5,-1,1]),K([-4,0,9,-4,-2,1]),K([-3,4,5,-5,-1,1]),K([12,-8,-167,85,38,-19]),K([129,53,-942,473,197,-105])])
 
gp: E = ellinit([Polrev([-1,5,4,-5,-1,1]),Polrev([-4,0,9,-4,-2,1]),Polrev([-3,4,5,-5,-1,1]),Polrev([12,-8,-167,85,38,-19]),Polrev([129,53,-942,473,197,-105])], K);
 
magma: E := EllipticCurve([K![-1,5,4,-5,-1,1],K![-4,0,9,-4,-2,1],K![-3,4,5,-5,-1,1],K![12,-8,-167,85,38,-19],K![129,53,-942,473,197,-105]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-a^4-4a^3+4a^2-2)\) = \((a^5-a^4-4a^3+4a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 47 \) = \(47\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^5+a^4+4a^3-4a^2+2)\) = \((a^5-a^4-4a^3+4a^2-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -47 \) = \(-47\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{21417905398977605}{47} a^{5} + \frac{62004666093510408}{47} a^{4} - \frac{10624618770251898}{47} a^{3} - \frac{65152171397191321}{47} a^{2} + \frac{16575370430512357}{47} a + \frac{11272985421638474}{47} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(19 a^{5} - 9 a^{4} - 96 a^{3} + 24 a^{2} + 86 a + 22 : 110 a^{5} - 46 a^{4} - 563 a^{3} + 91 a^{2} + 562 a + 157 : 1\right)$
Height \(1.2799600035188543476811824635816111570\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(4 a^{5} - 4 a^{4} - 16 a^{3} + 11 a^{2} + 6 a + 3 : -4 a^{5} + 2 a^{4} + 20 a^{3} - 6 a^{2} - 18 a : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.2799600035188543476811824635816111570 \)
Period: \( 11.565787949700540708792798169997877455 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 2.33639 \)
Analytic order of Ш: \( 81 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-a^4-4a^3+4a^2-2)\) \(47\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 47.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.