Properties

Label 6.6.592661.1-67.1-a1
Base field 6.6.592661.1
Conductor norm \( 67 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-4a^{3}+5a^{2}+2a-3\right){x}{y}+\left(a^{5}-a^{4}-4a^{3}+4a^{2}+2a-1\right){y}={x}^{3}+\left(-a^{3}+2a\right){x}^{2}+\left(-a^{3}+2a\right){x}\)
sage: E = EllipticCurve([K([-3,2,5,-4,-1,1]),K([0,2,0,-1,0,0]),K([-1,2,4,-4,-1,1]),K([0,2,0,-1,0,0]),K([0,0,0,0,0,0])])
 
gp: E = ellinit([Polrev([-3,2,5,-4,-1,1]),Polrev([0,2,0,-1,0,0]),Polrev([-1,2,4,-4,-1,1]),Polrev([0,2,0,-1,0,0]),Polrev([0,0,0,0,0,0])], K);
 
magma: E := EllipticCurve([K![-3,2,5,-4,-1,1],K![0,2,0,-1,0,0],K![-1,2,4,-4,-1,1],K![0,2,0,-1,0,0],K![0,0,0,0,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-a^4-5a^3+5a^2+5a-3)\) = \((a^5-a^4-5a^3+5a^2+5a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 67 \) = \(67\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^5+a^4+4a^3-3a^2-1)\) = \((a^5-a^4-5a^3+5a^2+5a-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -67 \) = \(-67\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{293657}{67} a^{5} + \frac{844369}{67} a^{4} - \frac{137481}{67} a^{3} - \frac{966413}{67} a^{2} + \frac{347718}{67} a + \frac{215682}{67} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{2} + 2 : -3 a^{5} + 4 a^{4} + 14 a^{3} - 15 a^{2} - 10 a + 6 : 1\right)$
Height \(0.0088248633042439913228218977246167853033\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0088248633042439913228218977246167853033 \)
Period: \( 38394.882441067072297130643770062678508 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.64076 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-a^4-5a^3+5a^2+5a-3)\) \(67\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 67.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.