Properties

Label 6.6.592661.1-91.1-b3
Base field 6.6.592661.1
Conductor norm \( 91 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-4a^{3}+a^{2}+a-2\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(a^{5}-a^{4}-5a^{3}+5a^{2}+5a-4\right){x}^{2}+\left(258a^{5}+118a^{4}-1548a^{3}-690a^{2}+2039a+580\right){x}-20998a^{5}+9446a^{4}+107566a^{3}-21228a^{2}-105796a-29121\)
sage: E = EllipticCurve([K([-2,1,1,-4,0,1]),K([-4,5,5,-5,-1,1]),K([-2,1,1,0,0,0]),K([580,2039,-690,-1548,118,258]),K([-29121,-105796,-21228,107566,9446,-20998])])
 
gp: E = ellinit([Polrev([-2,1,1,-4,0,1]),Polrev([-4,5,5,-5,-1,1]),Polrev([-2,1,1,0,0,0]),Polrev([580,2039,-690,-1548,118,258]),Polrev([-29121,-105796,-21228,107566,9446,-20998])], K);
 
magma: E := EllipticCurve([K![-2,1,1,-4,0,1],K![-4,5,5,-5,-1,1],K![-2,1,1,0,0,0],K![580,2039,-690,-1548,118,258],K![-29121,-105796,-21228,107566,9446,-20998]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^5-a^4-10a^3+3a^2+9a-1)\) = \((a^4-4a^2+a+2)\cdot(-a^3+3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 91 \) = \(7\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-119a^5-289a^4+940a^3+967a^2-1541a+168)\) = \((a^4-4a^2+a+2)\cdot(-a^3+3a)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -27561634699895023 \) = \(-7\cdot13^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{210494899395329104316882674818601470}{27561634699895023} a^{5} + \frac{220326152901046187397217035121037707}{27561634699895023} a^{4} - \frac{601531540208629141835154188949660818}{27561634699895023} a^{3} - \frac{389178106994375647928627220188772756}{27561634699895023} a^{2} + \frac{255940859747009559786272783613073517}{27561634699895023} a + \frac{102845559693375533397370969339933439}{27561634699895023} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(466 a^{5} - 133 a^{4} - 2457 a^{3} + 118 a^{2} + 2582 a + 893 : -22649 a^{5} + 8332 a^{4} + 118044 a^{3} - 15657 a^{2} - 120764 a - 32128 : 1\right)$
Height \(2.7558158298354997392694944934465794881\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(7 a^{5} - 10 a^{4} - 32 a^{3} + 31 a^{2} + 21 a + 16 : -a^{5} + a^{4} + a^{3} - 6 a^{2} + 19 a + 22 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.7558158298354997392694944934465794881 \)
Period: \( 0.13046906259494527507272951778204633242 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.36409 \)
Analytic order of Ш: \( 2401 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-4a^2+a+2)\) \(7\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-a^3+3a)\) \(13\) \(2\) \(I_{14}\) Non-split multiplicative \(1\) \(1\) \(14\) \(14\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 91.1-b consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.