Properties

Label 16T43
Degree $16$
Order $32$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $C_4:D_4$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(16, 43);
 

Group action invariants

Degree $n$:  $16$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $43$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_4:D_4$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $8$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,16)(2,15)(3,5)(4,6)(7,8)(9,10)(11,12)(13,14), (1,10,15,7)(2,9,16,8)(3,11,6,14)(4,12,5,13), (1,3,2,4)(5,15,6,16)(7,12,8,11)(9,14,10,13)
magma: Generators(G);
 

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$8$:  $D_{4}$ x 4, $C_2^3$
$16$:  $D_4\times C_2$ x 2, $Q_8:C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$, $D_{4}$ x 4

Degree 8: $D_4$, $D_4\times C_2$, $Q_8:C_2$

Low degree siblings

16T34 x 2, 16T43, 32T20

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderRepresentative
$1^{16}$ $1$ $1$ $()$
$2^{4},1^{8}$ $2$ $2$ $( 7,10)( 8, 9)(11,14)(12,13)$
$2^{8}$ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$2^{8}$ $2$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)$
$4^{4}$ $2$ $4$ $( 1, 3, 2, 4)( 5,15, 6,16)( 7,12, 8,11)( 9,14,10,13)$
$4^{4}$ $2$ $4$ $( 1, 3, 2, 4)( 5,15, 6,16)( 7,13, 8,14)( 9,11,10,12)$
$4^{4}$ $2$ $4$ $( 1, 4, 2, 3)( 5,16, 6,15)( 7,11, 8,12)( 9,13,10,14)$
$4^{4}$ $2$ $4$ $( 1, 5, 2, 6)( 3,15, 4,16)( 7,11, 8,12)( 9,13,10,14)$
$2^{8}$ $4$ $2$ $( 1, 7)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 9,16)(10,15)$
$4^{4}$ $4$ $4$ $( 1, 7,15,10)( 2, 8,16, 9)( 3,14, 6,11)( 4,13, 5,12)$
$4^{4}$ $4$ $4$ $( 1,11,15,14)( 2,12,16,13)( 3, 9, 6, 8)( 4,10, 5, 7)$
$2^{8}$ $4$ $2$ $( 1,11)( 2,12)( 3, 9)( 4,10)( 5, 7)( 6, 8)(13,16)(14,15)$
$2^{8}$ $1$ $2$ $( 1,15)( 2,16)( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)$
$2^{8}$ $1$ $2$ $( 1,16)( 2,15)( 3, 5)( 4, 6)( 7, 9)( 8,10)(11,13)(12,14)$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $32=2^{5}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:  $2$
Label:  32.28
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 2C 2D 2E 2F 2G 4A 4B 4C1 4C-1 4D 4E
Size 1 1 1 1 2 2 4 4 2 2 2 2 4 4
2 P 1A 1A 1A 1A 1A 1A 1A 1A 2A 2A 2A 2A 2B 2B
Type
32.28.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.28.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.28.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.28.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.28.1e R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.28.1f R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.28.1g R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.28.1h R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.28.2a R 2 2 2 2 2 2 0 0 0 0 0 0 0 0
32.28.2b R 2 2 2 2 2 2 0 0 0 0 0 0 0 0
32.28.2c R 2 2 2 2 0 0 0 0 2 2 0 0 0 0
32.28.2d R 2 2 2 2 0 0 0 0 2 2 0 0 0 0
32.28.2e1 C 2 2 2 2 0 0 0 0 0 0 2i 2i 0 0
32.28.2e2 C 2 2 2 2 0 0 0 0 0 0 2i 2i 0 0

magma: CharacterTable(G);