Properties

Label 12.24.0-12.g.1.2
Level $12$
Index $24$
Genus $0$
Analytic rank $0$
Cusps $4$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $12$ $\SL_2$-level: $4$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (of which $2$ are rational) Cusp widths $2^{2}\cdot4^{2}$ Cusp orbits $1^{2}\cdot2$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 4E0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 12.24.0.26

Level structure

$\GL_2(\Z/12\Z)$-generators: $\begin{bmatrix}1&7\\4&9\end{bmatrix}$, $\begin{bmatrix}1&8\\4&3\end{bmatrix}$
$\GL_2(\Z/12\Z)$-subgroup: $C_2^2:\GL(2,3)$
Contains $-I$: no $\quad$ (see 12.12.0.g.1 for the level structure with $-I$)
Cyclic 12-isogeny field degree: $4$
Cyclic 12-torsion field degree: $8$
Full 12-torsion field degree: $192$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 621 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 12 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle -\frac{1}{3}\cdot\frac{(12x+y)^{12}(48x^{2}-24xy-y^{2})^{3}(48x^{2}+24xy-y^{2})^{3}}{y^{2}x^{2}(12x+y)^{12}(48x^{2}+y^{2})^{4}}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
$X_1(4)$ $4$ $2$ $2$ $0$ $0$
12.12.0-4.c.1.2 $12$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
12.72.2-12.s.1.1 $12$ $3$ $3$ $2$
12.96.1-12.k.1.1 $12$ $4$ $4$ $1$
24.48.0-24.bg.1.4 $24$ $2$ $2$ $0$
24.48.0-24.bg.1.6 $24$ $2$ $2$ $0$
24.48.0-24.bh.1.3 $24$ $2$ $2$ $0$
24.48.0-24.bh.1.9 $24$ $2$ $2$ $0$
24.48.0-24.bo.1.2 $24$ $2$ $2$ $0$
24.48.0-24.bo.1.5 $24$ $2$ $2$ $0$
24.48.0-24.bp.1.4 $24$ $2$ $2$ $0$
24.48.0-24.bp.1.6 $24$ $2$ $2$ $0$
36.648.22-36.ba.1.1 $36$ $27$ $27$ $22$
60.120.4-60.k.1.1 $60$ $5$ $5$ $4$
60.144.3-60.es.1.1 $60$ $6$ $6$ $3$
60.240.7-60.s.1.7 $60$ $10$ $10$ $7$
84.192.5-84.k.1.6 $84$ $8$ $8$ $5$
84.504.16-84.s.1.1 $84$ $21$ $21$ $16$
120.48.0-120.bu.1.12 $120$ $2$ $2$ $0$
120.48.0-120.bu.1.15 $120$ $2$ $2$ $0$
120.48.0-120.bv.1.14 $120$ $2$ $2$ $0$
120.48.0-120.bv.1.15 $120$ $2$ $2$ $0$
120.48.0-120.by.1.8 $120$ $2$ $2$ $0$
120.48.0-120.by.1.15 $120$ $2$ $2$ $0$
120.48.0-120.bz.1.8 $120$ $2$ $2$ $0$
120.48.0-120.bz.1.15 $120$ $2$ $2$ $0$
132.288.9-132.k.1.7 $132$ $12$ $12$ $9$
156.336.11-156.o.1.4 $156$ $14$ $14$ $11$
168.48.0-168.bq.1.4 $168$ $2$ $2$ $0$
168.48.0-168.bq.1.13 $168$ $2$ $2$ $0$
168.48.0-168.br.1.8 $168$ $2$ $2$ $0$
168.48.0-168.br.1.9 $168$ $2$ $2$ $0$
168.48.0-168.bu.1.5 $168$ $2$ $2$ $0$
168.48.0-168.bu.1.12 $168$ $2$ $2$ $0$
168.48.0-168.bv.1.6 $168$ $2$ $2$ $0$
168.48.0-168.bv.1.11 $168$ $2$ $2$ $0$
204.432.15-204.o.1.1 $204$ $18$ $18$ $15$
228.480.17-228.k.1.2 $228$ $20$ $20$ $17$
264.48.0-264.bq.1.6 $264$ $2$ $2$ $0$
264.48.0-264.bq.1.12 $264$ $2$ $2$ $0$
264.48.0-264.br.1.3 $264$ $2$ $2$ $0$
264.48.0-264.br.1.10 $264$ $2$ $2$ $0$
264.48.0-264.bu.1.3 $264$ $2$ $2$ $0$
264.48.0-264.bu.1.10 $264$ $2$ $2$ $0$
264.48.0-264.bv.1.6 $264$ $2$ $2$ $0$
264.48.0-264.bv.1.12 $264$ $2$ $2$ $0$
312.48.0-312.bu.1.6 $312$ $2$ $2$ $0$
312.48.0-312.bu.1.11 $312$ $2$ $2$ $0$
312.48.0-312.bv.1.5 $312$ $2$ $2$ $0$
312.48.0-312.bv.1.12 $312$ $2$ $2$ $0$
312.48.0-312.by.1.5 $312$ $2$ $2$ $0$
312.48.0-312.by.1.12 $312$ $2$ $2$ $0$
312.48.0-312.bz.1.7 $312$ $2$ $2$ $0$
312.48.0-312.bz.1.10 $312$ $2$ $2$ $0$