Properties

Label 12.24.0.r.1
Level $12$
Index $24$
Genus $0$
Analytic rank $0$
Cusps $2$
$\Q$-cusps $0$

Related objects

Downloads

Learn more

Invariants

Level: $12$ $\SL_2$-level: $12$
Index: $24$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 8 }{4} - \frac{ 0 }{3} - \frac{ 2 }{2}$
Cusps: $2$ (none of which are rational) Cusp widths $12^{2}$ Cusp orbits $2$
Elliptic points: $8$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $0$
Rational CM points: yes $\quad(D =$ $-3,-19,-43,-67,-163$)

Other labels

Cummins and Pauli (CP) label: 12F0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 12.24.0.39

Level structure

$\GL_2(\Z/12\Z)$-generators: $\begin{bmatrix}2&9\\7&10\end{bmatrix}$, $\begin{bmatrix}3&8\\8&7\end{bmatrix}$, $\begin{bmatrix}7&5\\11&2\end{bmatrix}$
$\GL_2(\Z/12\Z)$-subgroup: $C_{24}:D_4$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 12-isogeny field degree: $24$
Cyclic 12-torsion field degree: $96$
Full 12-torsion field degree: $192$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 5 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 24 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle -2^{18}\cdot3^3\,\frac{(3x-y)^{3}(12x-y)^{27}(432x^{3}-216x^{2}y+36xy^{2}-y^{3})^{3}(864x^{3}-432x^{2}y+72xy^{2}-5y^{3})^{3}}{(12x-y)^{24}(72x^{2}-12xy-y^{2})^{12}}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
$X_{\mathrm{ns}}^+(6)$ $6$ $4$ $4$ $0$ $0$
12.12.0.q.1 $12$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
$X_{\mathrm{ns}}(12)$ $12$ $2$ $2$ $3$
12.48.3.f.1 $12$ $2$ $2$ $3$
12.48.3.r.1 $12$ $2$ $2$ $3$
12.48.3.t.1 $12$ $2$ $2$ $3$
12.72.2.o.1 $12$ $3$ $3$ $2$
24.48.3.i.1 $24$ $2$ $2$ $3$
24.48.3.r.1 $24$ $2$ $2$ $3$
24.48.3.cb.1 $24$ $2$ $2$ $3$
24.48.3.ch.1 $24$ $2$ $2$ $3$
$X_{\mathrm{ns}}^+(24)$ $24$ $4$ $4$ $3$
36.72.4.w.1 $36$ $3$ $3$ $4$
36.72.4.x.1 $36$ $3$ $3$ $4$
$X_{\mathrm{ns}}^+(36)$ $36$ $9$ $9$ $10$
60.48.3.ch.1 $60$ $2$ $2$ $3$
60.48.3.cj.1 $60$ $2$ $2$ $3$
60.48.3.cl.1 $60$ $2$ $2$ $3$
60.48.3.cn.1 $60$ $2$ $2$ $3$
60.120.8.cp.1 $60$ $5$ $5$ $8$
60.144.7.un.1 $60$ $6$ $6$ $7$
60.240.15.kt.1 $60$ $10$ $10$ $15$
84.48.3.bt.1 $84$ $2$ $2$ $3$
84.48.3.bv.1 $84$ $2$ $2$ $3$
84.48.3.bx.1 $84$ $2$ $2$ $3$
84.48.3.bz.1 $84$ $2$ $2$ $3$
84.192.15.ch.1 $84$ $8$ $8$ $15$
120.48.3.gj.1 $120$ $2$ $2$ $3$
120.48.3.gp.1 $120$ $2$ $2$ $3$
120.48.3.gv.1 $120$ $2$ $2$ $3$
120.48.3.hb.1 $120$ $2$ $2$ $3$
132.48.3.bt.1 $132$ $2$ $2$ $3$
132.48.3.bv.1 $132$ $2$ $2$ $3$
132.48.3.bx.1 $132$ $2$ $2$ $3$
132.48.3.bz.1 $132$ $2$ $2$ $3$
132.288.23.cj.1 $132$ $12$ $12$ $23$
156.48.3.bt.1 $156$ $2$ $2$ $3$
156.48.3.bv.1 $156$ $2$ $2$ $3$
156.48.3.bx.1 $156$ $2$ $2$ $3$
156.48.3.bz.1 $156$ $2$ $2$ $3$
156.336.23.gh.1 $156$ $14$ $14$ $23$
168.48.3.fp.1 $168$ $2$ $2$ $3$
168.48.3.fv.1 $168$ $2$ $2$ $3$
168.48.3.gb.1 $168$ $2$ $2$ $3$
168.48.3.gh.1 $168$ $2$ $2$ $3$
204.48.3.bt.1 $204$ $2$ $2$ $3$
204.48.3.bv.1 $204$ $2$ $2$ $3$
204.48.3.bx.1 $204$ $2$ $2$ $3$
204.48.3.bz.1 $204$ $2$ $2$ $3$
228.48.3.bt.1 $228$ $2$ $2$ $3$
228.48.3.bv.1 $228$ $2$ $2$ $3$
228.48.3.bx.1 $228$ $2$ $2$ $3$
228.48.3.bz.1 $228$ $2$ $2$ $3$
264.48.3.fp.1 $264$ $2$ $2$ $3$
264.48.3.fv.1 $264$ $2$ $2$ $3$
264.48.3.gb.1 $264$ $2$ $2$ $3$
264.48.3.gh.1 $264$ $2$ $2$ $3$
276.48.3.bt.1 $276$ $2$ $2$ $3$
276.48.3.bv.1 $276$ $2$ $2$ $3$
276.48.3.bx.1 $276$ $2$ $2$ $3$
276.48.3.bz.1 $276$ $2$ $2$ $3$
312.48.3.fp.1 $312$ $2$ $2$ $3$
312.48.3.fv.1 $312$ $2$ $2$ $3$
312.48.3.gb.1 $312$ $2$ $2$ $3$
312.48.3.gh.1 $312$ $2$ $2$ $3$