Properties

Label 8001.2.a.t
Level $8001$
Weight $2$
Character orbit 8001.a
Self dual yes
Analytic conductor $63.888$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8001,2,Mod(1,8001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + ( - \beta_{11} + 1) q^{5} - q^{7} + (\beta_{15} + \beta_{14} + \beta_{13} + \cdots - 1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + ( - \beta_{11} + 1) q^{5} - q^{7} + (\beta_{15} + \beta_{14} + \beta_{13} + \cdots - 1) q^{8}+ \cdots + \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 12 q^{4} + 9 q^{5} - 16 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 2 q^{2} + 12 q^{4} + 9 q^{5} - 16 q^{7} + 6 q^{8} - 2 q^{10} + 22 q^{11} - 4 q^{13} - 2 q^{14} + 12 q^{16} + 18 q^{17} - 15 q^{19} + 40 q^{20} - 11 q^{22} + 5 q^{23} + 15 q^{25} + 24 q^{26} - 12 q^{28} + 12 q^{29} - 32 q^{31} + 9 q^{32} - 14 q^{34} - 9 q^{35} - 2 q^{37} - 3 q^{38} - 14 q^{40} + 45 q^{41} - 3 q^{43} + 54 q^{44} + 49 q^{47} + 16 q^{49} + 6 q^{50} + 38 q^{52} - 16 q^{53} + 7 q^{55} - 6 q^{56} + 16 q^{58} + 35 q^{59} - 11 q^{61} - 17 q^{62} - 2 q^{64} - 14 q^{65} + 17 q^{67} + 71 q^{68} + 2 q^{70} + 81 q^{71} - 15 q^{73} - 13 q^{74} + 14 q^{76} - 22 q^{77} - 34 q^{79} + 33 q^{80} - 14 q^{82} + 39 q^{83} - 17 q^{85} - 36 q^{86} + 61 q^{88} + 32 q^{89} + 4 q^{91} - 37 q^{92} + 13 q^{94} + 33 q^{95} - 4 q^{97} + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 116093 \nu^{15} + 228893 \nu^{14} + 2347523 \nu^{13} - 4412026 \nu^{12} - 18385016 \nu^{11} + \cdots - 128712 ) / 239255 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 118542 \nu^{15} - 282272 \nu^{14} - 2211727 \nu^{13} + 5170999 \nu^{12} + 15614719 \nu^{11} + \cdots + 299938 ) / 239255 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 246643 \nu^{15} - 556793 \nu^{14} - 4734663 \nu^{13} + 10433381 \nu^{12} + 34632721 \nu^{11} + \cdots + 1167877 ) / 239255 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 416133 \nu^{15} + 848713 \nu^{14} + 8205093 \nu^{13} - 16039026 \nu^{12} - 62183706 \nu^{11} + \cdots - 1601912 ) / 239255 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 420868 \nu^{15} + 831558 \nu^{14} + 8486798 \nu^{13} - 16040641 \nu^{12} - 66156781 \nu^{11} + \cdots - 2488852 ) / 239255 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 86516 \nu^{15} - 193256 \nu^{14} - 1686213 \nu^{13} + 3671187 \nu^{12} + 12597346 \nu^{11} + \cdots + 403609 ) / 47851 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 558146 \nu^{15} + 1242406 \nu^{14} + 10825416 \nu^{13} - 23508057 \nu^{12} - 80263942 \nu^{11} + \cdots - 2398759 ) / 239255 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 609731 \nu^{15} - 1339991 \nu^{14} - 11975331 \nu^{13} + 25605932 \nu^{12} + 90323612 \nu^{11} + \cdots + 2939939 ) / 239255 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 614167 \nu^{15} + 1330387 \nu^{14} + 12063962 \nu^{13} - 25378599 \nu^{12} - 90934424 \nu^{11} + \cdots - 2942448 ) / 239255 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 673264 \nu^{15} + 1527129 \nu^{14} + 13105079 \nu^{13} - 29129163 \nu^{12} - 97629743 \nu^{11} + \cdots - 5229541 ) / 239255 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 907437 \nu^{15} - 1921932 \nu^{14} - 18024552 \nu^{13} + 36966909 \nu^{12} + 137780884 \nu^{11} + \cdots + 5318248 ) / 239255 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 183898 \nu^{15} + 398886 \nu^{14} + 3621479 \nu^{13} - 7620756 \nu^{12} - 27413174 \nu^{11} + \cdots - 1000302 ) / 47851 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 929511 \nu^{15} - 2103041 \nu^{14} - 18058381 \nu^{13} + 39940442 \nu^{12} + 134317747 \nu^{11} + \cdots + 5430944 ) / 239255 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{15} + \beta_{14} + \beta_{13} + \beta_{12} - \beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + 5\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{15} + 2\beta_{14} - \beta_{11} + \beta_{9} + \beta_{8} - \beta_{7} + 5\beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9 \beta_{15} + 9 \beta_{14} + 10 \beta_{13} + 10 \beta_{12} + \beta_{11} + \beta_{10} - 9 \beta_{5} + \cdots - 9 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 10 \beta_{15} + 22 \beta_{14} + 3 \beta_{13} + 3 \beta_{12} - 7 \beta_{11} + 3 \beta_{10} + 9 \beta_{9} + \cdots + 63 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 68 \beta_{15} + 72 \beta_{14} + 81 \beta_{13} + 81 \beta_{12} + 15 \beta_{11} + 16 \beta_{10} + \cdots - 71 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 81 \beta_{15} + 193 \beta_{14} + 49 \beta_{13} + 45 \beta_{12} - 30 \beta_{11} + 46 \beta_{10} + \cdots + 320 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 492 \beta_{15} + 555 \beta_{14} + 618 \beta_{13} + 614 \beta_{12} + 161 \beta_{11} + 171 \beta_{10} + \cdots - 537 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 619 \beta_{15} + 1562 \beta_{14} + 537 \beta_{13} + 469 \beta_{12} - 45 \beta_{11} + 490 \beta_{10} + \cdots + 1658 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 3511 \beta_{15} + 4202 \beta_{14} + 4602 \beta_{13} + 4524 \beta_{12} + 1495 \beta_{11} + 1567 \beta_{10} + \cdots - 3961 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 4639 \beta_{15} + 12147 \beta_{14} + 5003 \beta_{13} + 4231 \beta_{12} + 822 \beta_{11} + 4497 \beta_{10} + \cdots + 8626 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 24939 \beta_{15} + 31494 \beta_{14} + 33856 \beta_{13} + 32868 \beta_{12} + 12804 \beta_{11} + \cdots - 28730 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 34545 \beta_{15} + 92328 \beta_{14} + 42883 \beta_{13} + 35508 \beta_{12} + 13085 \beta_{11} + \cdots + 44462 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 176958 \beta_{15} + 234588 \beta_{14} + 247371 \beta_{13} + 237044 \beta_{12} + 104286 \beta_{11} + \cdots - 206072 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.57541
−2.24781
−1.72082
−1.48078
−1.45188
−0.532475
−0.191617
−0.170601
0.102239
0.625678
1.24549
1.33134
1.79993
2.18919
2.37299
2.70451
−2.57541 0 4.63271 3.61540 0 −1.00000 −6.78030 0 −9.31112
1.2 −2.24781 0 3.05263 0.411504 0 −1.00000 −2.36611 0 −0.924982
1.3 −1.72082 0 0.961212 4.11468 0 −1.00000 1.78756 0 −7.08062
1.4 −1.48078 0 0.192706 −1.52223 0 −1.00000 2.67620 0 2.25409
1.5 −1.45188 0 0.107956 −0.584615 0 −1.00000 2.74702 0 0.848791
1.6 −0.532475 0 −1.71647 0.118172 0 −1.00000 1.97893 0 −0.0629236
1.7 −0.191617 0 −1.96328 −3.92161 0 −1.00000 0.759431 0 0.751445
1.8 −0.170601 0 −1.97090 0.206353 0 −1.00000 0.677439 0 −0.0352041
1.9 0.102239 0 −1.98955 −0.280585 0 −1.00000 −0.407889 0 −0.0286868
1.10 0.625678 0 −1.60853 0.920707 0 −1.00000 −2.25778 0 0.576066
1.11 1.24549 0 −0.448744 2.43368 0 −1.00000 −3.04990 0 3.03114
1.12 1.33134 0 −0.227522 2.92411 0 −1.00000 −2.96560 0 3.89299
1.13 1.79993 0 1.23975 −3.74624 0 −1.00000 −1.36840 0 −6.74297
1.14 2.18919 0 2.79257 −0.868150 0 −1.00000 1.73509 0 −1.90055
1.15 2.37299 0 3.63108 3.84175 0 −1.00000 3.87053 0 9.11644
1.16 2.70451 0 5.31438 1.33706 0 −1.00000 8.96376 0 3.61609
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.16
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(127\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8001.2.a.t 16
3.b odd 2 1 889.2.a.c 16
21.c even 2 1 6223.2.a.k 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
889.2.a.c 16 3.b odd 2 1
6223.2.a.k 16 21.c even 2 1
8001.2.a.t 16 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8001))\):

\( T_{2}^{16} - 2 T_{2}^{15} - 20 T_{2}^{14} + 38 T_{2}^{13} + 155 T_{2}^{12} - 275 T_{2}^{11} - 593 T_{2}^{10} + \cdots + 1 \) Copy content Toggle raw display
\( T_{5}^{16} - 9 T_{5}^{15} - 7 T_{5}^{14} + 273 T_{5}^{13} - 532 T_{5}^{12} - 2135 T_{5}^{11} + 7523 T_{5}^{10} + \cdots + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} - 2 T^{15} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( T^{16} - 9 T^{15} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( (T + 1)^{16} \) Copy content Toggle raw display
$11$ \( T^{16} - 22 T^{15} + \cdots - 417463 \) Copy content Toggle raw display
$13$ \( T^{16} + 4 T^{15} + \cdots + 9972315 \) Copy content Toggle raw display
$17$ \( T^{16} - 18 T^{15} + \cdots + 22881193 \) Copy content Toggle raw display
$19$ \( T^{16} + 15 T^{15} + \cdots + 906809 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 1853701360 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 8925976496 \) Copy content Toggle raw display
$31$ \( T^{16} + 32 T^{15} + \cdots + 713813 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots - 5726959039 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 19825104281 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots - 219978965872 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 49063403511 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 114032072912 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots - 58448663216 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots - 123057095311 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 15509381648 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 120439326815165 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots - 145782520397 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 845588972425 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots - 3653038864 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 10200551550832 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots - 269740302224 \) Copy content Toggle raw display
show more
show less