Properties

Label 14.2.356...197.1
Degree $14$
Signature $[2, 6]$
Discriminant $3.563\times 10^{19}$
Root discriminant \(24.92\)
Ramified primes $7,13$
Class number $1$
Class group trivial
Galois group $D_{14}$ (as 14T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 - x^13 + 13*x^12 + 52*x^10 + 78*x^8 + 78*x^6 + 52*x^4 + 13*x^2 + 64*x + 1)
 
gp: K = bnfinit(y^14 - y^13 + 13*y^12 + 52*y^10 + 78*y^8 + 78*y^6 + 52*y^4 + 13*y^2 + 64*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - x^13 + 13*x^12 + 52*x^10 + 78*x^8 + 78*x^6 + 52*x^4 + 13*x^2 + 64*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - x^13 + 13*x^12 + 52*x^10 + 78*x^8 + 78*x^6 + 52*x^4 + 13*x^2 + 64*x + 1)
 

\( x^{14} - x^{13} + 13x^{12} + 52x^{10} + 78x^{8} + 78x^{6} + 52x^{4} + 13x^{2} + 64x + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $14$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(35632953415471973197\) \(\medspace = 7^{6}\cdot 13^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(24.92\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{1/2}13^{13/14}\approx 28.636833207042958$
Ramified primes:   \(7\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{13}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{9}a^{10}+\frac{1}{9}a^{9}+\frac{1}{9}a^{8}+\frac{1}{9}a^{7}+\frac{1}{9}a^{6}-\frac{1}{3}a^{5}+\frac{4}{9}a^{4}-\frac{1}{9}a^{3}-\frac{2}{9}a^{2}+\frac{2}{9}a+\frac{4}{9}$, $\frac{1}{45}a^{11}+\frac{2}{45}a^{10}+\frac{2}{45}a^{9}-\frac{4}{45}a^{8}-\frac{1}{45}a^{7}-\frac{2}{45}a^{6}-\frac{2}{45}a^{5}-\frac{7}{15}a^{4}-\frac{1}{5}a^{3}-\frac{2}{5}a^{2}-\frac{2}{5}a+\frac{16}{45}$, $\frac{1}{135}a^{12}-\frac{7}{135}a^{10}+\frac{2}{135}a^{9}-\frac{13}{135}a^{8}+\frac{2}{27}a^{7}-\frac{1}{45}a^{6}+\frac{13}{135}a^{5}-\frac{2}{135}a^{4}-\frac{11}{27}a^{3}+\frac{28}{135}a^{2}+\frac{4}{45}a-\frac{67}{135}$, $\frac{1}{10219635}a^{13}+\frac{1489}{3406545}a^{12}-\frac{102196}{10219635}a^{11}+\frac{18481}{2043927}a^{10}-\frac{386167}{10219635}a^{9}+\frac{132869}{2043927}a^{8}-\frac{31358}{3406545}a^{7}-\frac{6136}{2043927}a^{6}-\frac{1270568}{10219635}a^{5}-\frac{106808}{2043927}a^{4}+\frac{4319809}{10219635}a^{3}-\frac{48584}{681309}a^{2}-\frac{2016481}{10219635}a-\frac{1137791}{3406545}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{250802}{10219635}a^{13}-\frac{572173}{10219635}a^{12}+\frac{3517036}{10219635}a^{11}-\frac{706076}{2043927}a^{10}+\frac{11531513}{10219635}a^{9}-\frac{3299552}{3406545}a^{8}+\frac{16210439}{10219635}a^{7}-\frac{979556}{2043927}a^{6}+\frac{12053692}{10219635}a^{5}-\frac{366952}{378505}a^{4}+\frac{3708592}{3406545}a^{3}+\frac{665590}{2043927}a^{2}-\frac{2448760}{2043927}a+\frac{12522631}{10219635}$, $\frac{386}{9855}a^{13}-\frac{121}{3285}a^{12}+\frac{995}{1971}a^{11}+\frac{457}{9855}a^{10}+\frac{4013}{1971}a^{9}+\frac{2186}{9855}a^{8}+\frac{2266}{657}a^{7}+\frac{4763}{9855}a^{6}+\frac{8251}{1971}a^{5}-\frac{3281}{9855}a^{4}+\frac{5428}{1971}a^{3}-\frac{562}{1095}a^{2}+\frac{8791}{9855}a+\frac{347}{1095}$, $\frac{7654}{1135515}a^{13}+\frac{14420}{681309}a^{12}+\frac{106448}{3406545}a^{11}+\frac{1267198}{3406545}a^{10}+\frac{221383}{3406545}a^{9}+\frac{3739327}{3406545}a^{8}-\frac{41962}{378505}a^{7}+\frac{908194}{1135515}a^{6}+\frac{1212709}{1135515}a^{5}-\frac{1486912}{3406545}a^{4}+\frac{3461998}{3406545}a^{3}+\frac{146033}{3406545}a^{2}-\frac{29435}{681309}a+\frac{3171677}{3406545}$, $\frac{1225}{75701}a^{13}-\frac{187336}{10219635}a^{12}+\frac{568126}{3406545}a^{11}+\frac{321613}{10219635}a^{10}+\frac{3462334}{10219635}a^{9}-\frac{1002254}{10219635}a^{8}+\frac{1868687}{10219635}a^{7}+\frac{76048}{1135515}a^{6}+\frac{14892056}{10219635}a^{5}-\frac{6425131}{10219635}a^{4}+\frac{5873578}{10219635}a^{3}+\frac{10403273}{10219635}a^{2}+\frac{1060378}{3406545}a-\frac{928429}{2043927}$, $\frac{791}{681309}a^{13}+\frac{237358}{10219635}a^{12}-\frac{1949}{378505}a^{11}+\frac{2732978}{10219635}a^{10}+\frac{364819}{2043927}a^{9}+\frac{7505498}{10219635}a^{8}+\frac{4035388}{10219635}a^{7}+\frac{533008}{1135515}a^{6}+\frac{1626986}{2043927}a^{5}+\frac{3347047}{10219635}a^{4}+\frac{5865197}{10219635}a^{3}-\frac{7133672}{10219635}a^{2}+\frac{286403}{681309}a-\frac{1452469}{10219635}$, $\frac{157756}{10219635}a^{13}-\frac{307361}{10219635}a^{12}+\frac{319903}{2043927}a^{11}-\frac{1585307}{10219635}a^{10}+\frac{1429714}{10219635}a^{9}-\frac{721085}{681309}a^{8}-\frac{1970446}{2043927}a^{7}-\frac{13106918}{10219635}a^{6}+\frac{2442206}{10219635}a^{5}+\frac{278048}{681309}a^{4}-\frac{3760}{681309}a^{3}-\frac{8389382}{10219635}a^{2}-\frac{3259787}{2043927}a-\frac{2430871}{10219635}$, $\frac{151081}{3406545}a^{13}-\frac{29398}{681309}a^{12}+\frac{213212}{378505}a^{11}+\frac{12787}{3406545}a^{10}+\frac{7380067}{3406545}a^{9}-\frac{60896}{227103}a^{8}+\frac{9228577}{3406545}a^{7}-\frac{1562104}{1135515}a^{6}+\frac{527167}{378505}a^{5}-\frac{1748308}{681309}a^{4}-\frac{4207027}{3406545}a^{3}-\frac{7402828}{3406545}a^{2}-\frac{7750352}{3406545}a+\frac{695741}{681309}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 45027.4148013 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 45027.4148013 \cdot 1}{2\cdot\sqrt{35632953415471973197}}\cr\approx \mathstrut & 0.928240063449 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 - x^13 + 13*x^12 + 52*x^10 + 78*x^8 + 78*x^6 + 52*x^4 + 13*x^2 + 64*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 - x^13 + 13*x^12 + 52*x^10 + 78*x^8 + 78*x^6 + 52*x^4 + 13*x^2 + 64*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^14 - x^13 + 13*x^12 + 52*x^10 + 78*x^8 + 78*x^6 + 52*x^4 + 13*x^2 + 64*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - x^13 + 13*x^12 + 52*x^10 + 78*x^8 + 78*x^6 + 52*x^4 + 13*x^2 + 64*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{14}$ (as 14T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 28
The 10 conjugacy class representatives for $D_{14}$
Character table for $D_{14}$

Intermediate fields

\(\Q(\sqrt{13}) \), 7.1.1655595487.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 28
Degree 14 sibling: 14.0.249430673908303812379.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.14.0.1}{14} }$ ${\href{/padicField/3.2.0.1}{2} }^{6}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ ${\href{/padicField/5.2.0.1}{2} }^{7}$ R ${\href{/padicField/11.14.0.1}{14} }$ R ${\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.2.0.1}{2} }^{7}$ ${\href{/padicField/23.7.0.1}{7} }^{2}$ ${\href{/padicField/29.7.0.1}{7} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{7}$ ${\href{/padicField/37.14.0.1}{14} }$ ${\href{/padicField/41.2.0.1}{2} }^{7}$ ${\href{/padicField/43.7.0.1}{7} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{7}$ ${\href{/padicField/53.7.0.1}{7} }^{2}$ ${\href{/padicField/59.2.0.1}{2} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.2.0.1$x^{2} + 6 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(13\) Copy content Toggle raw display 13.14.13.1$x^{14} + 13$$14$$1$$13$$D_{14}$$[\ ]_{14}^{2}$