Properties

Label 17.1.638...280.1
Degree $17$
Signature $[1, 8]$
Discriminant $6.389\times 10^{25}$
Root discriminant \(32.96\)
Ramified primes $2,5,7,27851834699314662203$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{17}$ (as 17T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^17 + 4*x^9 - 18*x^6 + 12*x^3 + 4*x - 2)
 
gp: K = bnfinit(y^17 + 4*y^9 - 18*y^6 + 12*y^3 + 4*y - 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 + 4*x^9 - 18*x^6 + 12*x^3 + 4*x - 2);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 + 4*x^9 - 18*x^6 + 12*x^3 + 4*x - 2)
 

\( x^{17} + 4x^{9} - 18x^{6} + 12x^{3} + 4x - 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $17$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(63885424359899999574753280\) \(\medspace = 2^{16}\cdot 5\cdot 7\cdot 27851834699314662203\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(32.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{16/17}5^{1/2}7^{1/2}27851834699314662203^{1/2}\approx 59949183925.2028$
Ramified primes:   \(2\), \(5\), \(7\), \(27851834699314662203\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{97481\!\cdots\!77105}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{367423}a^{16}-\frac{156495}{367423}a^{15}+\frac{104960}{367423}a^{14}-\frac{69985}{367423}a^{13}+\frac{157791}{367423}a^{12}-\frac{104984}{367423}a^{11}+\frac{151635}{367423}a^{10}-\frac{104870}{367423}a^{9}-\frac{52487}{367423}a^{8}-\frac{155523}{367423}a^{7}+\frac{104942}{367423}a^{6}+\frac{174946}{367423}a^{5}-\frac{16848}{367423}a^{4}+\frac{312}{367423}a^{3}+\frac{5833}{52489}a^{2}+\frac{864}{52489}a-\frac{108}{367423}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a-1$, $\frac{57592}{367423}a^{16}+\frac{26150}{367423}a^{15}+\frac{13124}{367423}a^{14}+\frac{54190}{367423}a^{13}+\frac{26213}{367423}a^{12}+\frac{74360}{367423}a^{11}+\frac{53056}{367423}a^{10}+\frac{26234}{367423}a^{9}+\frac{325140}{367423}a^{8}+\frac{157278}{367423}a^{7}+\frac{78737}{367423}a^{6}-\frac{718320}{367423}a^{5}-\frac{313296}{367423}a^{4}-\frac{35023}{367423}a^{3}+\frac{4536}{52489}a^{2}-\frac{84}{52489}a+\frac{26255}{367423}$, $\frac{152392}{367423}a^{16}+\frac{106044}{367423}a^{15}+\frac{38861}{367423}a^{14}+\frac{33301}{367423}a^{13}+\frac{87837}{367423}a^{12}-\frac{22039}{367423}a^{11}-\frac{6396}{367423}a^{10}+\frac{81768}{367423}a^{9}+\frac{567229}{367423}a^{8}+\frac{527022}{367423}a^{7}+\frac{235189}{367423}a^{6}-\frac{2781432}{367423}a^{5}-\frac{1418184}{367423}a^{4}-\frac{586109}{367423}a^{3}+\frac{211277}{52489}a^{2}+\frac{76765}{52489}a+\frac{810545}{367423}$, $\frac{8748}{52489}a^{16}-\frac{162}{52489}a^{15}+\frac{3}{52489}a^{14}+\frac{2916}{52489}a^{13}-\frac{54}{52489}a^{12}+\frac{1}{52489}a^{11}+\frac{972}{52489}a^{10}-\frac{18}{52489}a^{9}+\frac{17496}{52489}a^{8}-\frac{324}{52489}a^{7}+\frac{6}{52489}a^{6}-\frac{151632}{52489}a^{5}-\frac{49681}{52489}a^{4}-\frac{52}{52489}a^{3}+\frac{106921}{52489}a^{2}+\frac{51481}{52489}a+\frac{52507}{52489}$, $\frac{14904}{52489}a^{16}-\frac{276}{52489}a^{15}-\frac{5827}{52489}a^{14}+\frac{4968}{52489}a^{13}-\frac{92}{52489}a^{12}+\frac{15554}{52489}a^{11}+\frac{1656}{52489}a^{10}-\frac{17527}{52489}a^{9}+\frac{82297}{52489}a^{8}-\frac{552}{52489}a^{7}-\frac{11654}{52489}a^{6}-\frac{205847}{52489}a^{5}-\frac{47705}{52489}a^{4}+\frac{135994}{52489}a^{3}+\frac{145225}{52489}a^{2}-\frac{36710}{52489}a-\frac{87451}{52489}$, $\frac{299088}{367423}a^{16}+\frac{239410}{367423}a^{15}+\frac{22783}{367423}a^{14}+\frac{47207}{367423}a^{13}+\frac{114796}{367423}a^{12}+\frac{147565}{367423}a^{11}+\frac{85721}{367423}a^{10}+\frac{73258}{367423}a^{9}+\frac{1385511}{367423}a^{8}+\frac{1056199}{367423}a^{7}+\frac{150544}{367423}a^{6}-\frac{4869258}{367423}a^{5}-\frac{3869832}{367423}a^{4}+\frac{357437}{367423}a^{3}+\frac{475812}{52489}a^{2}+\frac{166152}{52489}a-\frac{335703}{367423}$, $\frac{148685}{367423}a^{16}+\frac{72092}{367423}a^{15}+\frac{53098}{367423}a^{14}+\frac{67058}{367423}a^{13}+\frac{94016}{367423}a^{12}+\frac{52692}{367423}a^{11}+\frac{39849}{367423}a^{10}+\frac{101324}{367423}a^{9}+\frac{769771}{367423}a^{8}+\frac{196673}{367423}a^{7}+\frac{316152}{367423}a^{6}-\frac{2069813}{367423}a^{5}-\frac{1057135}{367423}a^{4}-\frac{640424}{367423}a^{3}+\frac{108836}{52489}a^{2}+\frac{23257}{52489}a+\frac{476055}{367423}$, $\frac{21780}{52489}a^{16}+\frac{17093}{52489}a^{15}+\frac{27872}{52489}a^{14}+\frac{7260}{52489}a^{13}+\frac{23194}{52489}a^{12}+\frac{26787}{52489}a^{11}+\frac{2420}{52489}a^{10}+\frac{42724}{52489}a^{9}+\frac{96049}{52489}a^{8}+\frac{86675}{52489}a^{7}+\frac{160722}{52489}a^{6}-\frac{377520}{52489}a^{5}-\frac{156308}{52489}a^{4}-\frac{395633}{52489}a^{3}+\frac{188009}{52489}a^{2}-\frac{74439}{52489}a+\frac{114743}{52489}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2034427.1525 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{8}\cdot 2034427.1525 \cdot 1}{2\cdot\sqrt{63885424359899999574753280}}\cr\approx \mathstrut & 0.61827288206 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^17 + 4*x^9 - 18*x^6 + 12*x^3 + 4*x - 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^17 + 4*x^9 - 18*x^6 + 12*x^3 + 4*x - 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^17 + 4*x^9 - 18*x^6 + 12*x^3 + 4*x - 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 + 4*x^9 - 18*x^6 + 12*x^3 + 4*x - 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{17}$ (as 17T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 355687428096000
The 297 conjugacy class representatives for $S_{17}$
Character table for $S_{17}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $17$ R R ${\href{/padicField/11.11.0.1}{11} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.13.0.1}{13} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ ${\href{/padicField/17.8.0.1}{8} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.5.0.1}{5} }$ ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.7.0.1}{7} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ $17$ ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ $16{,}\,{\href{/padicField/41.1.0.1}{1} }$ $15{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.17.16.1$x^{17} + 2$$17$$1$$16$$C_{17}:C_{8}$$[\ ]_{17}^{8}$
\(5\) Copy content Toggle raw display 5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.3.0.1$x^{3} + 3 x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
5.12.0.1$x^{12} + x^{7} + x^{6} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 2$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(7\) Copy content Toggle raw display $\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.14.0.1$x^{14} + 5 x^{7} + 6 x^{5} + 2 x^{4} + 3 x^{2} + 6 x + 3$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(27851834699314662203\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$