Properties

Label 42.0.180...927.1
Degree $42$
Signature $[0, 21]$
Discriminant $-1.803\times 10^{86}$
Root discriminant \(113.17\)
Ramified prime $127$
Class number $1528865$ (GRH)
Class group [1528865] (GRH)
Galois group $C_{42}$ (as 42T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^42 - x^41 + 2*x^40 + 80*x^39 - 73*x^38 + 139*x^37 + 2635*x^36 - 2181*x^35 + 3934*x^34 + 46702*x^33 - 34779*x^32 + 59013*x^31 + 489577*x^30 - 325107*x^29 + 514966*x^28 + 3148122*x^27 - 1839378*x^26 + 2684924*x^25 + 12529404*x^24 - 6257436*x^23 + 8056643*x^22 + 30745048*x^21 - 12383236*x^20 + 11933159*x^19 + 46384476*x^18 - 13840937*x^17 + 3649186*x^16 + 41025120*x^15 - 8138959*x^14 - 9679906*x^13 + 28379769*x^12 - 8357477*x^11 + 3513515*x^10 + 45545418*x^9 - 12952087*x^8 + 8843411*x^7 + 29858262*x^6 - 8807791*x^5 + 14296232*x^4 - 4154414*x^3 - 181830*x^2 + 2389098*x + 733913)
 
gp: K = bnfinit(y^42 - y^41 + 2*y^40 + 80*y^39 - 73*y^38 + 139*y^37 + 2635*y^36 - 2181*y^35 + 3934*y^34 + 46702*y^33 - 34779*y^32 + 59013*y^31 + 489577*y^30 - 325107*y^29 + 514966*y^28 + 3148122*y^27 - 1839378*y^26 + 2684924*y^25 + 12529404*y^24 - 6257436*y^23 + 8056643*y^22 + 30745048*y^21 - 12383236*y^20 + 11933159*y^19 + 46384476*y^18 - 13840937*y^17 + 3649186*y^16 + 41025120*y^15 - 8138959*y^14 - 9679906*y^13 + 28379769*y^12 - 8357477*y^11 + 3513515*y^10 + 45545418*y^9 - 12952087*y^8 + 8843411*y^7 + 29858262*y^6 - 8807791*y^5 + 14296232*y^4 - 4154414*y^3 - 181830*y^2 + 2389098*y + 733913, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^42 - x^41 + 2*x^40 + 80*x^39 - 73*x^38 + 139*x^37 + 2635*x^36 - 2181*x^35 + 3934*x^34 + 46702*x^33 - 34779*x^32 + 59013*x^31 + 489577*x^30 - 325107*x^29 + 514966*x^28 + 3148122*x^27 - 1839378*x^26 + 2684924*x^25 + 12529404*x^24 - 6257436*x^23 + 8056643*x^22 + 30745048*x^21 - 12383236*x^20 + 11933159*x^19 + 46384476*x^18 - 13840937*x^17 + 3649186*x^16 + 41025120*x^15 - 8138959*x^14 - 9679906*x^13 + 28379769*x^12 - 8357477*x^11 + 3513515*x^10 + 45545418*x^9 - 12952087*x^8 + 8843411*x^7 + 29858262*x^6 - 8807791*x^5 + 14296232*x^4 - 4154414*x^3 - 181830*x^2 + 2389098*x + 733913);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - x^41 + 2*x^40 + 80*x^39 - 73*x^38 + 139*x^37 + 2635*x^36 - 2181*x^35 + 3934*x^34 + 46702*x^33 - 34779*x^32 + 59013*x^31 + 489577*x^30 - 325107*x^29 + 514966*x^28 + 3148122*x^27 - 1839378*x^26 + 2684924*x^25 + 12529404*x^24 - 6257436*x^23 + 8056643*x^22 + 30745048*x^21 - 12383236*x^20 + 11933159*x^19 + 46384476*x^18 - 13840937*x^17 + 3649186*x^16 + 41025120*x^15 - 8138959*x^14 - 9679906*x^13 + 28379769*x^12 - 8357477*x^11 + 3513515*x^10 + 45545418*x^9 - 12952087*x^8 + 8843411*x^7 + 29858262*x^6 - 8807791*x^5 + 14296232*x^4 - 4154414*x^3 - 181830*x^2 + 2389098*x + 733913)
 

\( x^{42} - x^{41} + 2 x^{40} + 80 x^{39} - 73 x^{38} + 139 x^{37} + 2635 x^{36} - 2181 x^{35} + \cdots + 733913 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $42$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 21]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-180\!\cdots\!927\) \(\medspace = -\,127^{41}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(113.17\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $127^{41/42}\approx 113.16526797549884$
Ramified primes:   \(127\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-127}) \)
$\card{ \Gal(K/\Q) }$:  $42$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(127\)
Dirichlet character group:    $\lbrace$$\chi_{127}(1,·)$, $\chi_{127}(2,·)$, $\chi_{127}(4,·)$, $\chi_{127}(5,·)$, $\chi_{127}(8,·)$, $\chi_{127}(10,·)$, $\chi_{127}(16,·)$, $\chi_{127}(19,·)$, $\chi_{127}(20,·)$, $\chi_{127}(25,·)$, $\chi_{127}(27,·)$, $\chi_{127}(32,·)$, $\chi_{127}(33,·)$, $\chi_{127}(38,·)$, $\chi_{127}(40,·)$, $\chi_{127}(47,·)$, $\chi_{127}(50,·)$, $\chi_{127}(51,·)$, $\chi_{127}(54,·)$, $\chi_{127}(61,·)$, $\chi_{127}(63,·)$, $\chi_{127}(64,·)$, $\chi_{127}(66,·)$, $\chi_{127}(73,·)$, $\chi_{127}(76,·)$, $\chi_{127}(77,·)$, $\chi_{127}(80,·)$, $\chi_{127}(87,·)$, $\chi_{127}(89,·)$, $\chi_{127}(94,·)$, $\chi_{127}(95,·)$, $\chi_{127}(100,·)$, $\chi_{127}(102,·)$, $\chi_{127}(107,·)$, $\chi_{127}(108,·)$, $\chi_{127}(111,·)$, $\chi_{127}(117,·)$, $\chi_{127}(119,·)$, $\chi_{127}(122,·)$, $\chi_{127}(123,·)$, $\chi_{127}(125,·)$, $\chi_{127}(126,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{1048576}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{19}a^{17}+\frac{3}{19}a^{16}-\frac{8}{19}a^{14}-\frac{5}{19}a^{13}+\frac{7}{19}a^{11}+\frac{2}{19}a^{10}+\frac{1}{19}a^{8}+\frac{3}{19}a^{7}-\frac{8}{19}a^{5}-\frac{5}{19}a^{4}+\frac{7}{19}a^{2}+\frac{2}{19}a$, $\frac{1}{19}a^{18}-\frac{9}{19}a^{16}-\frac{8}{19}a^{15}-\frac{4}{19}a^{13}+\frac{7}{19}a^{12}-\frac{6}{19}a^{10}+\frac{1}{19}a^{9}-\frac{9}{19}a^{7}-\frac{8}{19}a^{6}-\frac{4}{19}a^{4}+\frac{7}{19}a^{3}-\frac{6}{19}a$, $\frac{1}{19}a^{19}-\frac{1}{19}a$, $\frac{1}{19}a^{20}-\frac{1}{19}a^{2}$, $\frac{1}{19}a^{21}-\frac{1}{19}a^{3}$, $\frac{1}{19}a^{22}-\frac{1}{19}a^{4}$, $\frac{1}{19}a^{23}-\frac{1}{19}a^{5}$, $\frac{1}{19}a^{24}-\frac{1}{19}a^{6}$, $\frac{1}{19}a^{25}-\frac{1}{19}a^{7}$, $\frac{1}{19}a^{26}-\frac{1}{19}a^{8}$, $\frac{1}{19}a^{27}-\frac{1}{19}a^{9}$, $\frac{1}{19}a^{28}-\frac{1}{19}a^{10}$, $\frac{1}{19}a^{29}-\frac{1}{19}a^{11}$, $\frac{1}{19}a^{30}-\frac{1}{19}a^{12}$, $\frac{1}{19}a^{31}-\frac{1}{19}a^{13}$, $\frac{1}{19}a^{32}-\frac{1}{19}a^{14}$, $\frac{1}{361}a^{33}+\frac{2}{361}a^{32}+\frac{1}{361}a^{31}-\frac{1}{361}a^{30}+\frac{3}{361}a^{29}-\frac{4}{361}a^{28}-\frac{1}{361}a^{27}-\frac{3}{361}a^{26}-\frac{8}{361}a^{25}-\frac{2}{361}a^{24}-\frac{6}{361}a^{23}+\frac{3}{361}a^{22}+\frac{5}{361}a^{21}+\frac{6}{361}a^{20}-\frac{4}{361}a^{19}+\frac{1}{361}a^{18}+\frac{1}{361}a^{17}-\frac{63}{361}a^{16}+\frac{48}{361}a^{15}+\frac{142}{361}a^{14}+\frac{104}{361}a^{13}-\frac{144}{361}a^{12}-\frac{129}{361}a^{11}-\frac{6}{19}a^{10}+\frac{40}{361}a^{9}-\frac{148}{361}a^{8}-\frac{169}{361}a^{7}+\frac{146}{361}a^{6}+\frac{131}{361}a^{5}+\frac{178}{361}a^{4}-\frac{93}{361}a^{3}+\frac{1}{361}a^{2}+\frac{4}{19}a$, $\frac{1}{361}a^{34}-\frac{3}{361}a^{32}-\frac{3}{361}a^{31}+\frac{5}{361}a^{30}+\frac{9}{361}a^{29}+\frac{7}{361}a^{28}-\frac{1}{361}a^{27}-\frac{2}{361}a^{26}-\frac{5}{361}a^{25}-\frac{2}{361}a^{24}-\frac{4}{361}a^{23}-\frac{1}{361}a^{22}-\frac{4}{361}a^{21}+\frac{3}{361}a^{20}+\frac{9}{361}a^{19}-\frac{1}{361}a^{18}-\frac{8}{361}a^{17}-\frac{16}{361}a^{16}+\frac{46}{361}a^{15}+\frac{86}{361}a^{14}+\frac{85}{361}a^{13}+\frac{159}{361}a^{12}+\frac{163}{361}a^{11}+\frac{21}{361}a^{10}+\frac{7}{19}a^{9}-\frac{177}{361}a^{8}-\frac{48}{361}a^{7}-\frac{161}{361}a^{6}-\frac{160}{361}a^{5}-\frac{12}{361}a^{4}-\frac{174}{361}a^{3}+\frac{93}{361}a^{2}-\frac{2}{19}a$, $\frac{1}{361}a^{35}+\frac{3}{361}a^{32}+\frac{8}{361}a^{31}+\frac{6}{361}a^{30}-\frac{3}{361}a^{29}+\frac{6}{361}a^{28}-\frac{5}{361}a^{27}+\frac{5}{361}a^{26}-\frac{7}{361}a^{25}+\frac{9}{361}a^{24}+\frac{5}{361}a^{22}-\frac{1}{361}a^{21}+\frac{8}{361}a^{20}+\frac{6}{361}a^{19}-\frac{5}{361}a^{18}+\frac{6}{361}a^{17}-\frac{86}{361}a^{16}-\frac{131}{361}a^{15}-\frac{2}{361}a^{14}+\frac{15}{361}a^{13}+\frac{92}{361}a^{12}+\frac{147}{361}a^{11}+\frac{9}{19}a^{10}-\frac{3}{19}a^{9}-\frac{131}{361}a^{8}+\frac{92}{361}a^{7}-\frac{102}{361}a^{6}-\frac{151}{361}a^{5}-\frac{96}{361}a^{4}-\frac{167}{361}a^{3}+\frac{117}{361}a^{2}-\frac{6}{19}a$, $\frac{1}{38627}a^{36}-\frac{3}{38627}a^{35}-\frac{1}{38627}a^{34}-\frac{34}{38627}a^{33}+\frac{80}{38627}a^{32}+\frac{632}{38627}a^{31}-\frac{825}{38627}a^{30}+\frac{389}{38627}a^{29}-\frac{908}{38627}a^{28}+\frac{20}{38627}a^{27}-\frac{498}{38627}a^{26}+\frac{711}{38627}a^{25}+\frac{524}{38627}a^{24}-\frac{130}{38627}a^{23}-\frac{506}{38627}a^{22}-\frac{170}{38627}a^{21}-\frac{718}{38627}a^{20}-\frac{36}{38627}a^{19}-\frac{946}{38627}a^{18}-\frac{4}{2033}a^{17}-\frac{7026}{38627}a^{16}+\frac{1685}{38627}a^{15}+\frac{10679}{38627}a^{14}-\frac{9795}{38627}a^{13}-\frac{6778}{38627}a^{12}-\frac{12000}{38627}a^{11}-\frac{11307}{38627}a^{10}-\frac{17628}{38627}a^{9}+\frac{9311}{38627}a^{8}+\frac{12649}{38627}a^{7}+\frac{9829}{38627}a^{6}+\frac{5322}{38627}a^{5}-\frac{468}{38627}a^{4}-\frac{1201}{38627}a^{3}-\frac{7663}{38627}a^{2}+\frac{997}{2033}a$, $\frac{1}{19661143}a^{37}+\frac{34}{19661143}a^{36}+\frac{2135}{19661143}a^{35}-\frac{25323}{19661143}a^{34}+\frac{16584}{19661143}a^{33}+\frac{229362}{19661143}a^{32}+\frac{453234}{19661143}a^{31}+\frac{394333}{19661143}a^{30}+\frac{7890}{1034797}a^{29}-\frac{300434}{19661143}a^{28}-\frac{251529}{19661143}a^{27}-\frac{53988}{19661143}a^{26}-\frac{47427}{19661143}a^{25}+\frac{107319}{19661143}a^{24}+\frac{7417}{19661143}a^{23}+\frac{257917}{19661143}a^{22}+\frac{491612}{19661143}a^{21}-\frac{423037}{19661143}a^{20}-\frac{226122}{19661143}a^{19}+\frac{118681}{19661143}a^{18}-\frac{339719}{19661143}a^{17}+\frac{8909055}{19661143}a^{16}-\frac{7802390}{19661143}a^{15}+\frac{7562246}{19661143}a^{14}+\frac{9176598}{19661143}a^{13}-\frac{3239847}{19661143}a^{12}+\frac{2457554}{19661143}a^{11}+\frac{6614778}{19661143}a^{10}+\frac{7689272}{19661143}a^{9}-\frac{430257}{19661143}a^{8}+\frac{271075}{1034797}a^{7}+\frac{7353634}{19661143}a^{6}+\frac{1363388}{19661143}a^{5}-\frac{4594586}{19661143}a^{4}+\frac{1969023}{19661143}a^{3}+\frac{9737558}{19661143}a^{2}-\frac{193910}{1034797}a-\frac{232}{509}$, $\frac{1}{19661143}a^{38}-\frac{39}{19661143}a^{36}+\frac{14067}{19661143}a^{35}+\frac{7176}{19661143}a^{34}+\frac{26896}{19661143}a^{33}+\frac{307232}{19661143}a^{32}-\frac{463822}{19661143}a^{31}+\frac{108928}{19661143}a^{30}+\frac{469869}{19661143}a^{29}-\frac{47}{183749}a^{28}+\frac{199262}{19661143}a^{27}+\frac{497850}{19661143}a^{26}-\frac{93221}{19661143}a^{25}-\frac{35673}{19661143}a^{24}-\frac{406551}{19661143}a^{23}-\frac{192101}{19661143}a^{22}+\frac{463375}{19661143}a^{21}-\frac{21897}{1034797}a^{20}+\frac{382046}{19661143}a^{19}+\frac{346102}{19661143}a^{18}-\frac{25571}{1034797}a^{17}-\frac{1887235}{19661143}a^{16}-\frac{8648255}{19661143}a^{15}-\frac{928683}{19661143}a^{14}-\frac{6379925}{19661143}a^{13}+\frac{8081058}{19661143}a^{12}+\frac{3025914}{19661143}a^{11}-\frac{486070}{19661143}a^{10}-\frac{7332929}{19661143}a^{9}-\frac{2607166}{19661143}a^{8}-\frac{1889932}{19661143}a^{7}+\frac{9291870}{19661143}a^{6}+\frac{9042489}{19661143}a^{5}-\frac{9792688}{19661143}a^{4}-\frac{2612866}{19661143}a^{3}+\frac{71083}{183749}a^{2}+\frac{313594}{1034797}a+\frac{253}{509}$, $\frac{1}{373561717}a^{39}+\frac{9}{373561717}a^{38}+\frac{8}{373561717}a^{37}-\frac{4537}{373561717}a^{36}+\frac{457066}{373561717}a^{35}+\frac{173799}{373561717}a^{34}-\frac{229305}{373561717}a^{33}+\frac{10414}{1034797}a^{32}+\frac{272677}{19661143}a^{31}+\frac{9619614}{373561717}a^{30}+\frac{388669}{373561717}a^{29}+\frac{1008383}{373561717}a^{28}-\frac{5625098}{373561717}a^{27}+\frac{2259229}{373561717}a^{26}-\frac{552114}{373561717}a^{25}-\frac{4723964}{373561717}a^{24}+\frac{221892}{373561717}a^{23}-\frac{4859828}{373561717}a^{22}+\frac{3547896}{373561717}a^{21}+\frac{7510227}{373561717}a^{20}+\frac{2639961}{373561717}a^{19}+\frac{952808}{373561717}a^{18}+\frac{1121670}{373561717}a^{17}-\frac{29329430}{373561717}a^{16}+\frac{36840367}{373561717}a^{15}-\frac{50974776}{373561717}a^{14}-\frac{4282122}{373561717}a^{13}+\frac{84665112}{373561717}a^{12}-\frac{83233788}{373561717}a^{11}-\frac{109217796}{373561717}a^{10}-\frac{160603565}{373561717}a^{9}-\frac{36466423}{373561717}a^{8}+\frac{73393423}{373561717}a^{7}-\frac{46622985}{373561717}a^{6}+\frac{119831414}{373561717}a^{5}-\frac{156452088}{373561717}a^{4}-\frac{177177155}{373561717}a^{3}+\frac{113395}{19661143}a^{2}-\frac{17420}{54463}a-\frac{79}{509}$, $\frac{1}{21640803827527}a^{40}-\frac{10381}{21640803827527}a^{39}-\frac{45318}{21640803827527}a^{38}+\frac{537139}{21640803827527}a^{37}+\frac{62308633}{21640803827527}a^{36}-\frac{8050177856}{21640803827527}a^{35}+\frac{17272512348}{21640803827527}a^{34}+\frac{25868273044}{21640803827527}a^{33}+\frac{21653540436}{1138989675133}a^{32}-\frac{517296799242}{21640803827527}a^{31}-\frac{346859790347}{21640803827527}a^{30}+\frac{323333946633}{21640803827527}a^{29}+\frac{55420110529}{21640803827527}a^{28}+\frac{382100248000}{21640803827527}a^{27}-\frac{99584067552}{21640803827527}a^{26}-\frac{60181367649}{21640803827527}a^{25}+\frac{146468088430}{21640803827527}a^{24}+\frac{46642974945}{21640803827527}a^{23}-\frac{151419273681}{21640803827527}a^{22}-\frac{485697147037}{21640803827527}a^{21}+\frac{66978822185}{21640803827527}a^{20}+\frac{146735341751}{21640803827527}a^{19}+\frac{556938728590}{21640803827527}a^{18}+\frac{391826411786}{21640803827527}a^{17}+\frac{387349179937}{21640803827527}a^{16}-\frac{2397838978859}{21640803827527}a^{15}+\frac{3110757281309}{21640803827527}a^{14}-\frac{452963130987}{1138989675133}a^{13}+\frac{6496913622368}{21640803827527}a^{12}+\frac{6225980942897}{21640803827527}a^{11}-\frac{3557749040526}{21640803827527}a^{10}-\frac{6226025891295}{21640803827527}a^{9}-\frac{8589454833696}{21640803827527}a^{8}-\frac{8669512855797}{21640803827527}a^{7}+\frac{3560630388858}{21640803827527}a^{6}+\frac{2903015360036}{21640803827527}a^{5}-\frac{6029210500183}{21640803827527}a^{4}-\frac{2560236032782}{21640803827527}a^{3}+\frac{449891967806}{1138989675133}a^{2}-\frac{2712650494}{59946825007}a-\frac{7736935}{29486879}$, $\frac{1}{34\!\cdots\!71}a^{41}+\frac{14\!\cdots\!97}{34\!\cdots\!71}a^{40}+\frac{34\!\cdots\!92}{34\!\cdots\!71}a^{39}+\frac{34\!\cdots\!75}{17\!\cdots\!09}a^{38}+\frac{34\!\cdots\!65}{34\!\cdots\!71}a^{37}-\frac{70\!\cdots\!80}{34\!\cdots\!71}a^{36}+\frac{82\!\cdots\!75}{34\!\cdots\!71}a^{35}+\frac{11\!\cdots\!42}{34\!\cdots\!71}a^{34}+\frac{23\!\cdots\!41}{34\!\cdots\!71}a^{33}-\frac{42\!\cdots\!69}{34\!\cdots\!71}a^{32}+\frac{45\!\cdots\!59}{34\!\cdots\!71}a^{31}+\frac{34\!\cdots\!90}{34\!\cdots\!71}a^{30}+\frac{78\!\cdots\!97}{34\!\cdots\!71}a^{29}-\frac{88\!\cdots\!57}{34\!\cdots\!71}a^{28}+\frac{40\!\cdots\!75}{17\!\cdots\!09}a^{27}-\frac{29\!\cdots\!45}{34\!\cdots\!71}a^{26}-\frac{68\!\cdots\!30}{34\!\cdots\!71}a^{25}-\frac{30\!\cdots\!89}{34\!\cdots\!71}a^{24}+\frac{60\!\cdots\!84}{34\!\cdots\!71}a^{23}+\frac{79\!\cdots\!42}{34\!\cdots\!71}a^{22}+\frac{39\!\cdots\!38}{34\!\cdots\!71}a^{21}+\frac{17\!\cdots\!67}{34\!\cdots\!71}a^{20}+\frac{48\!\cdots\!86}{34\!\cdots\!71}a^{19}-\frac{49\!\cdots\!05}{34\!\cdots\!71}a^{18}+\frac{74\!\cdots\!79}{34\!\cdots\!71}a^{17}+\frac{10\!\cdots\!92}{34\!\cdots\!71}a^{16}+\frac{65\!\cdots\!66}{34\!\cdots\!71}a^{15}+\frac{12\!\cdots\!02}{34\!\cdots\!71}a^{14}-\frac{78\!\cdots\!49}{34\!\cdots\!71}a^{13}+\frac{69\!\cdots\!76}{34\!\cdots\!71}a^{12}+\frac{56\!\cdots\!07}{34\!\cdots\!71}a^{11}+\frac{74\!\cdots\!35}{34\!\cdots\!71}a^{10}+\frac{88\!\cdots\!60}{34\!\cdots\!71}a^{9}-\frac{11\!\cdots\!23}{34\!\cdots\!71}a^{8}+\frac{15\!\cdots\!03}{34\!\cdots\!71}a^{7}+\frac{15\!\cdots\!48}{34\!\cdots\!71}a^{6}+\frac{44\!\cdots\!27}{34\!\cdots\!71}a^{5}-\frac{10\!\cdots\!10}{34\!\cdots\!71}a^{4}+\frac{97\!\cdots\!75}{34\!\cdots\!71}a^{3}+\frac{35\!\cdots\!51}{58\!\cdots\!41}a^{2}-\frac{15\!\cdots\!68}{94\!\cdots\!11}a+\frac{21\!\cdots\!18}{46\!\cdots\!67}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $19$

Class group and class number

$C_{1528865}$, which has order $1528865$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{11\!\cdots\!25}{34\!\cdots\!71}a^{41}-\frac{22\!\cdots\!14}{34\!\cdots\!71}a^{40}+\frac{32\!\cdots\!24}{34\!\cdots\!71}a^{39}+\frac{46\!\cdots\!99}{17\!\cdots\!09}a^{38}-\frac{17\!\cdots\!74}{34\!\cdots\!71}a^{37}+\frac{22\!\cdots\!50}{34\!\cdots\!71}a^{36}+\frac{28\!\cdots\!80}{34\!\cdots\!71}a^{35}-\frac{55\!\cdots\!87}{34\!\cdots\!71}a^{34}+\frac{65\!\cdots\!51}{34\!\cdots\!71}a^{33}+\frac{49\!\cdots\!19}{34\!\cdots\!71}a^{32}-\frac{94\!\cdots\!77}{34\!\cdots\!71}a^{31}+\frac{10\!\cdots\!72}{34\!\cdots\!71}a^{30}+\frac{51\!\cdots\!78}{34\!\cdots\!71}a^{29}-\frac{95\!\cdots\!47}{34\!\cdots\!71}a^{28}+\frac{46\!\cdots\!56}{17\!\cdots\!09}a^{27}+\frac{32\!\cdots\!39}{34\!\cdots\!71}a^{26}-\frac{59\!\cdots\!08}{34\!\cdots\!71}a^{25}+\frac{47\!\cdots\!40}{34\!\cdots\!71}a^{24}+\frac{13\!\cdots\!73}{34\!\cdots\!71}a^{23}-\frac{22\!\cdots\!99}{34\!\cdots\!71}a^{22}+\frac{14\!\cdots\!63}{34\!\cdots\!71}a^{21}+\frac{34\!\cdots\!98}{34\!\cdots\!71}a^{20}-\frac{53\!\cdots\!51}{34\!\cdots\!71}a^{19}+\frac{22\!\cdots\!66}{34\!\cdots\!71}a^{18}+\frac{61\!\cdots\!57}{34\!\cdots\!71}a^{17}-\frac{77\!\cdots\!31}{34\!\cdots\!71}a^{16}+\frac{91\!\cdots\!54}{34\!\cdots\!71}a^{15}+\frac{79\!\cdots\!28}{34\!\cdots\!71}a^{14}-\frac{63\!\cdots\!08}{34\!\cdots\!71}a^{13}-\frac{20\!\cdots\!09}{34\!\cdots\!71}a^{12}+\frac{79\!\cdots\!12}{34\!\cdots\!71}a^{11}-\frac{39\!\cdots\!00}{34\!\cdots\!71}a^{10}-\frac{11\!\cdots\!72}{34\!\cdots\!71}a^{9}+\frac{72\!\cdots\!08}{34\!\cdots\!71}a^{8}-\frac{61\!\cdots\!62}{34\!\cdots\!71}a^{7}+\frac{43\!\cdots\!06}{34\!\cdots\!71}a^{6}+\frac{55\!\cdots\!39}{34\!\cdots\!71}a^{5}-\frac{48\!\cdots\!28}{34\!\cdots\!71}a^{4}+\frac{98\!\cdots\!00}{34\!\cdots\!71}a^{3}+\frac{38\!\cdots\!83}{17\!\cdots\!09}a^{2}-\frac{90\!\cdots\!16}{94\!\cdots\!11}a-\frac{42\!\cdots\!50}{46\!\cdots\!67}$, $\frac{17\!\cdots\!55}{34\!\cdots\!71}a^{41}-\frac{18\!\cdots\!48}{34\!\cdots\!71}a^{40}+\frac{38\!\cdots\!28}{34\!\cdots\!71}a^{39}+\frac{75\!\cdots\!94}{17\!\cdots\!09}a^{38}-\frac{13\!\cdots\!99}{34\!\cdots\!71}a^{37}+\frac{27\!\cdots\!20}{34\!\cdots\!71}a^{36}+\frac{47\!\cdots\!29}{34\!\cdots\!71}a^{35}-\frac{42\!\cdots\!44}{34\!\cdots\!71}a^{34}+\frac{78\!\cdots\!31}{34\!\cdots\!71}a^{33}+\frac{83\!\cdots\!83}{34\!\cdots\!71}a^{32}-\frac{68\!\cdots\!52}{34\!\cdots\!71}a^{31}+\frac{12\!\cdots\!69}{34\!\cdots\!71}a^{30}+\frac{88\!\cdots\!12}{34\!\cdots\!71}a^{29}-\frac{65\!\cdots\!35}{34\!\cdots\!71}a^{28}+\frac{56\!\cdots\!13}{17\!\cdots\!09}a^{27}+\frac{57\!\cdots\!12}{34\!\cdots\!71}a^{26}-\frac{38\!\cdots\!54}{34\!\cdots\!71}a^{25}+\frac{57\!\cdots\!51}{34\!\cdots\!71}a^{24}+\frac{23\!\cdots\!41}{34\!\cdots\!71}a^{23}-\frac{14\!\cdots\!48}{34\!\cdots\!71}a^{22}+\frac{17\!\cdots\!10}{34\!\cdots\!71}a^{21}+\frac{58\!\cdots\!23}{34\!\cdots\!71}a^{20}-\frac{31\!\cdots\!18}{34\!\cdots\!71}a^{19}+\frac{28\!\cdots\!12}{34\!\cdots\!71}a^{18}+\frac{94\!\cdots\!70}{34\!\cdots\!71}a^{17}-\frac{44\!\cdots\!85}{34\!\cdots\!71}a^{16}+\frac{11\!\cdots\!36}{34\!\cdots\!71}a^{15}+\frac{94\!\cdots\!09}{34\!\cdots\!71}a^{14}-\frac{40\!\cdots\!79}{34\!\cdots\!71}a^{13}-\frac{26\!\cdots\!98}{34\!\cdots\!71}a^{12}+\frac{74\!\cdots\!87}{34\!\cdots\!71}a^{11}-\frac{31\!\cdots\!85}{34\!\cdots\!71}a^{10}-\frac{11\!\cdots\!58}{34\!\cdots\!71}a^{9}+\frac{98\!\cdots\!73}{34\!\cdots\!71}a^{8}-\frac{29\!\cdots\!19}{34\!\cdots\!71}a^{7}+\frac{15\!\cdots\!65}{34\!\cdots\!71}a^{6}+\frac{70\!\cdots\!87}{34\!\cdots\!71}a^{5}-\frac{30\!\cdots\!52}{34\!\cdots\!71}a^{4}+\frac{17\!\cdots\!52}{34\!\cdots\!71}a^{3}+\frac{19\!\cdots\!93}{17\!\cdots\!09}a^{2}-\frac{17\!\cdots\!09}{94\!\cdots\!11}a-\frac{70\!\cdots\!99}{46\!\cdots\!67}$, $\frac{88\!\cdots\!02}{34\!\cdots\!71}a^{41}-\frac{97\!\cdots\!40}{34\!\cdots\!71}a^{40}+\frac{16\!\cdots\!14}{34\!\cdots\!71}a^{39}+\frac{37\!\cdots\!10}{17\!\cdots\!09}a^{38}-\frac{72\!\cdots\!56}{34\!\cdots\!71}a^{37}+\frac{11\!\cdots\!84}{34\!\cdots\!71}a^{36}+\frac{23\!\cdots\!67}{34\!\cdots\!71}a^{35}-\frac{22\!\cdots\!97}{34\!\cdots\!71}a^{34}+\frac{32\!\cdots\!45}{34\!\cdots\!71}a^{33}+\frac{41\!\cdots\!83}{34\!\cdots\!71}a^{32}-\frac{35\!\cdots\!55}{34\!\cdots\!71}a^{31}+\frac{47\!\cdots\!84}{34\!\cdots\!71}a^{30}+\frac{44\!\cdots\!55}{34\!\cdots\!71}a^{29}-\frac{34\!\cdots\!04}{34\!\cdots\!71}a^{28}+\frac{21\!\cdots\!24}{17\!\cdots\!09}a^{27}+\frac{28\!\cdots\!49}{34\!\cdots\!71}a^{26}-\frac{20\!\cdots\!77}{34\!\cdots\!71}a^{25}+\frac{20\!\cdots\!50}{34\!\cdots\!71}a^{24}+\frac{11\!\cdots\!69}{34\!\cdots\!71}a^{23}-\frac{72\!\cdots\!80}{34\!\cdots\!71}a^{22}+\frac{56\!\cdots\!02}{34\!\cdots\!71}a^{21}+\frac{30\!\cdots\!93}{34\!\cdots\!71}a^{20}-\frac{15\!\cdots\!99}{34\!\cdots\!71}a^{19}+\frac{70\!\cdots\!20}{34\!\cdots\!71}a^{18}+\frac{48\!\cdots\!16}{34\!\cdots\!71}a^{17}-\frac{18\!\cdots\!39}{34\!\cdots\!71}a^{16}-\frac{11\!\cdots\!32}{34\!\cdots\!71}a^{15}+\frac{47\!\cdots\!31}{34\!\cdots\!71}a^{14}-\frac{10\!\cdots\!75}{34\!\cdots\!71}a^{13}-\frac{96\!\cdots\!67}{34\!\cdots\!71}a^{12}+\frac{34\!\cdots\!81}{34\!\cdots\!71}a^{11}-\frac{55\!\cdots\!14}{34\!\cdots\!71}a^{10}+\frac{61\!\cdots\!22}{34\!\cdots\!71}a^{9}+\frac{45\!\cdots\!95}{34\!\cdots\!71}a^{8}-\frac{16\!\cdots\!40}{34\!\cdots\!71}a^{7}+\frac{70\!\cdots\!57}{34\!\cdots\!71}a^{6}+\frac{35\!\cdots\!37}{34\!\cdots\!71}a^{5}-\frac{15\!\cdots\!82}{34\!\cdots\!71}a^{4}+\frac{75\!\cdots\!44}{34\!\cdots\!71}a^{3}+\frac{11\!\cdots\!69}{17\!\cdots\!09}a^{2}-\frac{71\!\cdots\!35}{94\!\cdots\!11}a+\frac{16\!\cdots\!04}{46\!\cdots\!67}$, $\frac{72\!\cdots\!67}{34\!\cdots\!71}a^{41}-\frac{62\!\cdots\!03}{34\!\cdots\!71}a^{40}+\frac{74\!\cdots\!49}{34\!\cdots\!71}a^{39}+\frac{31\!\cdots\!48}{17\!\cdots\!09}a^{38}-\frac{46\!\cdots\!16}{34\!\cdots\!71}a^{37}+\frac{45\!\cdots\!74}{34\!\cdots\!71}a^{36}+\frac{19\!\cdots\!23}{34\!\cdots\!71}a^{35}-\frac{13\!\cdots\!88}{34\!\cdots\!71}a^{34}+\frac{10\!\cdots\!03}{34\!\cdots\!71}a^{33}+\frac{32\!\cdots\!71}{31\!\cdots\!53}a^{32}-\frac{22\!\cdots\!91}{34\!\cdots\!71}a^{31}+\frac{11\!\cdots\!08}{34\!\cdots\!71}a^{30}+\frac{37\!\cdots\!21}{34\!\cdots\!71}a^{29}-\frac{21\!\cdots\!29}{34\!\cdots\!71}a^{28}+\frac{31\!\cdots\!87}{17\!\cdots\!09}a^{27}+\frac{24\!\cdots\!44}{34\!\cdots\!71}a^{26}-\frac{12\!\cdots\!38}{34\!\cdots\!71}a^{25}+\frac{30\!\cdots\!42}{34\!\cdots\!71}a^{24}+\frac{98\!\cdots\!07}{34\!\cdots\!71}a^{23}-\frac{42\!\cdots\!25}{34\!\cdots\!71}a^{22}-\frac{11\!\cdots\!54}{34\!\cdots\!71}a^{21}+\frac{24\!\cdots\!93}{34\!\cdots\!71}a^{20}-\frac{80\!\cdots\!97}{34\!\cdots\!71}a^{19}-\frac{62\!\cdots\!17}{34\!\cdots\!71}a^{18}+\frac{35\!\cdots\!91}{34\!\cdots\!71}a^{17}-\frac{62\!\cdots\!52}{34\!\cdots\!71}a^{16}-\frac{14\!\cdots\!61}{34\!\cdots\!71}a^{15}+\frac{28\!\cdots\!49}{34\!\cdots\!71}a^{14}+\frac{30\!\cdots\!92}{34\!\cdots\!71}a^{13}-\frac{15\!\cdots\!53}{34\!\cdots\!71}a^{12}+\frac{16\!\cdots\!32}{34\!\cdots\!71}a^{11}+\frac{26\!\cdots\!78}{34\!\cdots\!71}a^{10}-\frac{99\!\cdots\!89}{34\!\cdots\!71}a^{9}+\frac{31\!\cdots\!86}{34\!\cdots\!71}a^{8}-\frac{96\!\cdots\!32}{34\!\cdots\!71}a^{7}-\frac{14\!\cdots\!82}{34\!\cdots\!71}a^{6}+\frac{18\!\cdots\!77}{34\!\cdots\!71}a^{5}+\frac{22\!\cdots\!85}{34\!\cdots\!71}a^{4}+\frac{11\!\cdots\!94}{34\!\cdots\!71}a^{3}-\frac{20\!\cdots\!71}{17\!\cdots\!09}a^{2}-\frac{14\!\cdots\!35}{94\!\cdots\!11}a-\frac{40\!\cdots\!13}{46\!\cdots\!67}$, $\frac{90\!\cdots\!91}{34\!\cdots\!71}a^{41}-\frac{67\!\cdots\!91}{34\!\cdots\!71}a^{40}+\frac{19\!\cdots\!75}{34\!\cdots\!71}a^{39}+\frac{38\!\cdots\!10}{17\!\cdots\!09}a^{38}-\frac{47\!\cdots\!24}{34\!\cdots\!71}a^{37}+\frac{14\!\cdots\!26}{34\!\cdots\!71}a^{36}+\frac{24\!\cdots\!57}{34\!\cdots\!71}a^{35}-\frac{13\!\cdots\!56}{34\!\cdots\!71}a^{34}+\frac{41\!\cdots\!77}{34\!\cdots\!71}a^{33}+\frac{43\!\cdots\!62}{34\!\cdots\!71}a^{32}-\frac{21\!\cdots\!32}{34\!\cdots\!71}a^{31}+\frac{65\!\cdots\!42}{34\!\cdots\!71}a^{30}+\frac{46\!\cdots\!89}{34\!\cdots\!71}a^{29}-\frac{20\!\cdots\!29}{34\!\cdots\!71}a^{28}+\frac{31\!\cdots\!13}{17\!\cdots\!09}a^{27}+\frac{30\!\cdots\!08}{34\!\cdots\!71}a^{26}-\frac{11\!\cdots\!68}{34\!\cdots\!71}a^{25}+\frac{34\!\cdots\!18}{34\!\cdots\!71}a^{24}+\frac{12\!\cdots\!84}{34\!\cdots\!71}a^{23}-\frac{42\!\cdots\!26}{34\!\cdots\!71}a^{22}+\frac{11\!\cdots\!56}{34\!\cdots\!71}a^{21}+\frac{32\!\cdots\!70}{34\!\cdots\!71}a^{20}-\frac{10\!\cdots\!24}{34\!\cdots\!71}a^{19}+\frac{21\!\cdots\!62}{34\!\cdots\!71}a^{18}+\frac{53\!\cdots\!36}{34\!\cdots\!71}a^{17}-\frac{17\!\cdots\!32}{34\!\cdots\!71}a^{16}+\frac{15\!\cdots\!37}{34\!\cdots\!71}a^{15}+\frac{55\!\cdots\!34}{34\!\cdots\!71}a^{14}-\frac{21\!\cdots\!30}{34\!\cdots\!71}a^{13}-\frac{94\!\cdots\!26}{34\!\cdots\!71}a^{12}+\frac{46\!\cdots\!05}{34\!\cdots\!71}a^{11}-\frac{17\!\cdots\!86}{34\!\cdots\!71}a^{10}-\frac{99\!\cdots\!47}{34\!\cdots\!71}a^{9}+\frac{60\!\cdots\!18}{34\!\cdots\!71}a^{8}-\frac{10\!\cdots\!14}{34\!\cdots\!71}a^{7}+\frac{12\!\cdots\!44}{34\!\cdots\!71}a^{6}+\frac{42\!\cdots\!40}{34\!\cdots\!71}a^{5}-\frac{15\!\cdots\!53}{34\!\cdots\!71}a^{4}+\frac{11\!\cdots\!81}{34\!\cdots\!71}a^{3}+\frac{11\!\cdots\!71}{17\!\cdots\!09}a^{2}-\frac{96\!\cdots\!21}{94\!\cdots\!11}a+\frac{90\!\cdots\!31}{46\!\cdots\!67}$, $\frac{23\!\cdots\!49}{34\!\cdots\!71}a^{41}-\frac{17\!\cdots\!35}{34\!\cdots\!71}a^{40}+\frac{42\!\cdots\!22}{34\!\cdots\!71}a^{39}+\frac{97\!\cdots\!72}{17\!\cdots\!09}a^{38}-\frac{12\!\cdots\!18}{34\!\cdots\!71}a^{37}+\frac{27\!\cdots\!44}{31\!\cdots\!53}a^{36}+\frac{61\!\cdots\!78}{34\!\cdots\!71}a^{35}-\frac{35\!\cdots\!41}{34\!\cdots\!71}a^{34}+\frac{82\!\cdots\!59}{34\!\cdots\!71}a^{33}+\frac{11\!\cdots\!74}{34\!\cdots\!71}a^{32}-\frac{54\!\cdots\!60}{34\!\cdots\!71}a^{31}+\frac{12\!\cdots\!17}{34\!\cdots\!71}a^{30}+\frac{11\!\cdots\!79}{34\!\cdots\!71}a^{29}-\frac{48\!\cdots\!31}{34\!\cdots\!71}a^{28}+\frac{56\!\cdots\!90}{17\!\cdots\!09}a^{27}+\frac{75\!\cdots\!90}{34\!\cdots\!71}a^{26}-\frac{25\!\cdots\!82}{34\!\cdots\!71}a^{25}+\frac{55\!\cdots\!19}{34\!\cdots\!71}a^{24}+\frac{30\!\cdots\!12}{34\!\cdots\!71}a^{23}-\frac{80\!\cdots\!26}{34\!\cdots\!71}a^{22}+\frac{16\!\cdots\!88}{34\!\cdots\!71}a^{21}+\frac{75\!\cdots\!14}{34\!\cdots\!71}a^{20}-\frac{14\!\cdots\!07}{34\!\cdots\!71}a^{19}+\frac{23\!\cdots\!29}{34\!\cdots\!71}a^{18}+\frac{11\!\cdots\!54}{34\!\cdots\!71}a^{17}-\frac{15\!\cdots\!77}{34\!\cdots\!71}a^{16}+\frac{24\!\cdots\!01}{34\!\cdots\!71}a^{15}+\frac{99\!\cdots\!90}{34\!\cdots\!71}a^{14}-\frac{11\!\cdots\!78}{34\!\cdots\!71}a^{13}-\frac{30\!\cdots\!88}{34\!\cdots\!71}a^{12}+\frac{64\!\cdots\!01}{34\!\cdots\!71}a^{11}-\frac{16\!\cdots\!08}{34\!\cdots\!71}a^{10}-\frac{50\!\cdots\!54}{34\!\cdots\!71}a^{9}+\frac{11\!\cdots\!76}{34\!\cdots\!71}a^{8}-\frac{60\!\cdots\!80}{34\!\cdots\!71}a^{7}+\frac{11\!\cdots\!40}{34\!\cdots\!71}a^{6}+\frac{75\!\cdots\!46}{34\!\cdots\!71}a^{5}-\frac{11\!\cdots\!28}{34\!\cdots\!71}a^{4}+\frac{25\!\cdots\!24}{34\!\cdots\!71}a^{3}-\frac{81\!\cdots\!02}{17\!\cdots\!09}a^{2}-\frac{26\!\cdots\!54}{94\!\cdots\!11}a+\frac{13\!\cdots\!86}{46\!\cdots\!67}$, $\frac{12\!\cdots\!77}{34\!\cdots\!71}a^{41}-\frac{46\!\cdots\!00}{34\!\cdots\!71}a^{40}+\frac{12\!\cdots\!17}{34\!\cdots\!71}a^{39}+\frac{51\!\cdots\!25}{17\!\cdots\!09}a^{38}-\frac{30\!\cdots\!70}{34\!\cdots\!71}a^{37}+\frac{77\!\cdots\!87}{34\!\cdots\!71}a^{36}+\frac{33\!\cdots\!53}{34\!\cdots\!71}a^{35}-\frac{77\!\cdots\!05}{34\!\cdots\!71}a^{34}+\frac{19\!\cdots\!40}{34\!\cdots\!71}a^{33}+\frac{60\!\cdots\!94}{34\!\cdots\!71}a^{32}-\frac{10\!\cdots\!05}{34\!\cdots\!71}a^{31}+\frac{26\!\cdots\!88}{34\!\cdots\!71}a^{30}+\frac{65\!\cdots\!73}{34\!\cdots\!71}a^{29}-\frac{71\!\cdots\!90}{34\!\cdots\!71}a^{28}+\frac{10\!\cdots\!98}{17\!\cdots\!09}a^{27}+\frac{43\!\cdots\!90}{34\!\cdots\!71}a^{26}-\frac{25\!\cdots\!85}{34\!\cdots\!71}a^{25}+\frac{76\!\cdots\!16}{34\!\cdots\!71}a^{24}+\frac{17\!\cdots\!74}{34\!\cdots\!71}a^{23}-\frac{17\!\cdots\!78}{34\!\cdots\!71}a^{22}+\frac{12\!\cdots\!65}{34\!\cdots\!71}a^{21}+\frac{44\!\cdots\!07}{34\!\cdots\!71}a^{20}+\frac{22\!\cdots\!60}{34\!\cdots\!71}a^{19}-\frac{25\!\cdots\!38}{34\!\cdots\!71}a^{18}+\frac{64\!\cdots\!90}{34\!\cdots\!71}a^{17}+\frac{97\!\cdots\!96}{34\!\cdots\!71}a^{16}-\frac{15\!\cdots\!29}{34\!\cdots\!71}a^{15}+\frac{46\!\cdots\!93}{34\!\cdots\!71}a^{14}+\frac{16\!\cdots\!67}{34\!\cdots\!71}a^{13}-\frac{22\!\cdots\!03}{34\!\cdots\!71}a^{12}+\frac{18\!\cdots\!51}{34\!\cdots\!71}a^{11}+\frac{84\!\cdots\!36}{34\!\cdots\!71}a^{10}-\frac{19\!\cdots\!91}{34\!\cdots\!71}a^{9}+\frac{54\!\cdots\!39}{34\!\cdots\!71}a^{8}+\frac{33\!\cdots\!73}{34\!\cdots\!71}a^{7}-\frac{37\!\cdots\!64}{34\!\cdots\!71}a^{6}+\frac{42\!\cdots\!87}{34\!\cdots\!71}a^{5}-\frac{55\!\cdots\!95}{34\!\cdots\!71}a^{4}+\frac{14\!\cdots\!24}{34\!\cdots\!71}a^{3}-\frac{13\!\cdots\!29}{17\!\cdots\!09}a^{2}-\frac{16\!\cdots\!29}{94\!\cdots\!11}a+\frac{10\!\cdots\!50}{46\!\cdots\!67}$, $\frac{25\!\cdots\!87}{34\!\cdots\!71}a^{41}-\frac{17\!\cdots\!38}{34\!\cdots\!71}a^{40}+\frac{42\!\cdots\!37}{34\!\cdots\!71}a^{39}+\frac{10\!\cdots\!91}{17\!\cdots\!09}a^{38}-\frac{12\!\cdots\!53}{34\!\cdots\!71}a^{37}+\frac{29\!\cdots\!30}{34\!\cdots\!71}a^{36}+\frac{68\!\cdots\!70}{34\!\cdots\!71}a^{35}-\frac{34\!\cdots\!24}{34\!\cdots\!71}a^{34}+\frac{82\!\cdots\!28}{34\!\cdots\!71}a^{33}+\frac{12\!\cdots\!86}{34\!\cdots\!71}a^{32}-\frac{51\!\cdots\!52}{34\!\cdots\!71}a^{31}+\frac{12\!\cdots\!29}{34\!\cdots\!71}a^{30}+\frac{12\!\cdots\!10}{34\!\cdots\!71}a^{29}-\frac{44\!\cdots\!54}{34\!\cdots\!71}a^{28}+\frac{18\!\cdots\!00}{58\!\cdots\!41}a^{27}+\frac{84\!\cdots\!17}{34\!\cdots\!71}a^{26}-\frac{23\!\cdots\!87}{34\!\cdots\!71}a^{25}+\frac{54\!\cdots\!37}{34\!\cdots\!71}a^{24}+\frac{34\!\cdots\!74}{34\!\cdots\!71}a^{23}-\frac{68\!\cdots\!95}{34\!\cdots\!71}a^{22}+\frac{15\!\cdots\!90}{34\!\cdots\!71}a^{21}+\frac{85\!\cdots\!10}{34\!\cdots\!71}a^{20}-\frac{10\!\cdots\!99}{34\!\cdots\!71}a^{19}+\frac{20\!\cdots\!48}{34\!\cdots\!71}a^{18}+\frac{12\!\cdots\!14}{34\!\cdots\!71}a^{17}-\frac{53\!\cdots\!06}{34\!\cdots\!71}a^{16}-\frac{29\!\cdots\!63}{34\!\cdots\!71}a^{15}+\frac{10\!\cdots\!93}{34\!\cdots\!71}a^{14}+\frac{27\!\cdots\!19}{34\!\cdots\!71}a^{13}-\frac{34\!\cdots\!41}{34\!\cdots\!71}a^{12}+\frac{60\!\cdots\!40}{34\!\cdots\!71}a^{11}-\frac{62\!\cdots\!18}{34\!\cdots\!71}a^{10}+\frac{20\!\cdots\!07}{34\!\cdots\!71}a^{9}+\frac{11\!\cdots\!60}{34\!\cdots\!71}a^{8}-\frac{54\!\cdots\!35}{34\!\cdots\!71}a^{7}+\frac{19\!\cdots\!71}{34\!\cdots\!71}a^{6}+\frac{88\!\cdots\!22}{34\!\cdots\!71}a^{5}-\frac{15\!\cdots\!54}{34\!\cdots\!71}a^{4}+\frac{23\!\cdots\!17}{34\!\cdots\!71}a^{3}+\frac{21\!\cdots\!42}{17\!\cdots\!09}a^{2}-\frac{24\!\cdots\!32}{94\!\cdots\!11}a-\frac{27\!\cdots\!64}{46\!\cdots\!67}$, $\frac{26\!\cdots\!72}{34\!\cdots\!71}a^{41}-\frac{24\!\cdots\!83}{34\!\cdots\!71}a^{40}+\frac{49\!\cdots\!56}{34\!\cdots\!71}a^{39}+\frac{11\!\cdots\!27}{17\!\cdots\!09}a^{38}-\frac{18\!\cdots\!35}{34\!\cdots\!71}a^{37}+\frac{33\!\cdots\!12}{34\!\cdots\!71}a^{36}+\frac{71\!\cdots\!73}{34\!\cdots\!71}a^{35}-\frac{53\!\cdots\!36}{34\!\cdots\!71}a^{34}+\frac{94\!\cdots\!08}{34\!\cdots\!71}a^{33}+\frac{12\!\cdots\!35}{34\!\cdots\!71}a^{32}-\frac{85\!\cdots\!83}{34\!\cdots\!71}a^{31}+\frac{13\!\cdots\!95}{34\!\cdots\!71}a^{30}+\frac{13\!\cdots\!63}{34\!\cdots\!71}a^{29}-\frac{78\!\cdots\!27}{34\!\cdots\!71}a^{28}+\frac{61\!\cdots\!03}{17\!\cdots\!09}a^{27}+\frac{86\!\cdots\!47}{34\!\cdots\!71}a^{26}-\frac{44\!\cdots\!73}{34\!\cdots\!71}a^{25}+\frac{58\!\cdots\!77}{34\!\cdots\!71}a^{24}+\frac{34\!\cdots\!87}{34\!\cdots\!71}a^{23}-\frac{14\!\cdots\!36}{34\!\cdots\!71}a^{22}+\frac{16\!\cdots\!04}{34\!\cdots\!71}a^{21}+\frac{85\!\cdots\!27}{34\!\cdots\!71}a^{20}-\frac{28\!\cdots\!92}{34\!\cdots\!71}a^{19}+\frac{19\!\cdots\!59}{34\!\cdots\!71}a^{18}+\frac{12\!\cdots\!63}{34\!\cdots\!71}a^{17}-\frac{30\!\cdots\!60}{34\!\cdots\!71}a^{16}-\frac{83\!\cdots\!64}{34\!\cdots\!71}a^{15}+\frac{11\!\cdots\!54}{34\!\cdots\!71}a^{14}-\frac{17\!\cdots\!37}{34\!\cdots\!71}a^{13}-\frac{41\!\cdots\!23}{34\!\cdots\!71}a^{12}+\frac{71\!\cdots\!18}{34\!\cdots\!71}a^{11}-\frac{19\!\cdots\!48}{34\!\cdots\!71}a^{10}-\frac{11\!\cdots\!86}{34\!\cdots\!71}a^{9}+\frac{11\!\cdots\!23}{34\!\cdots\!71}a^{8}-\frac{29\!\cdots\!69}{34\!\cdots\!71}a^{7}+\frac{64\!\cdots\!93}{34\!\cdots\!71}a^{6}+\frac{83\!\cdots\!45}{34\!\cdots\!71}a^{5}-\frac{18\!\cdots\!68}{34\!\cdots\!71}a^{4}+\frac{27\!\cdots\!97}{34\!\cdots\!71}a^{3}-\frac{78\!\cdots\!63}{17\!\cdots\!09}a^{2}-\frac{29\!\cdots\!47}{94\!\cdots\!11}a+\frac{16\!\cdots\!33}{46\!\cdots\!67}$, $\frac{32\!\cdots\!66}{34\!\cdots\!71}a^{41}-\frac{68\!\cdots\!23}{34\!\cdots\!71}a^{40}+\frac{98\!\cdots\!66}{34\!\cdots\!71}a^{39}+\frac{13\!\cdots\!39}{17\!\cdots\!09}a^{38}-\frac{53\!\cdots\!03}{34\!\cdots\!71}a^{37}+\frac{69\!\cdots\!90}{34\!\cdots\!71}a^{36}+\frac{83\!\cdots\!93}{34\!\cdots\!71}a^{35}-\frac{16\!\cdots\!23}{34\!\cdots\!71}a^{34}+\frac{20\!\cdots\!54}{34\!\cdots\!71}a^{33}+\frac{14\!\cdots\!79}{34\!\cdots\!71}a^{32}-\frac{28\!\cdots\!03}{34\!\cdots\!71}a^{31}+\frac{31\!\cdots\!20}{34\!\cdots\!71}a^{30}+\frac{15\!\cdots\!91}{34\!\cdots\!71}a^{29}-\frac{29\!\cdots\!17}{34\!\cdots\!71}a^{28}+\frac{14\!\cdots\!91}{17\!\cdots\!09}a^{27}+\frac{97\!\cdots\!72}{34\!\cdots\!71}a^{26}-\frac{18\!\cdots\!45}{34\!\cdots\!71}a^{25}+\frac{15\!\cdots\!33}{34\!\cdots\!71}a^{24}+\frac{39\!\cdots\!93}{34\!\cdots\!71}a^{23}-\frac{72\!\cdots\!52}{34\!\cdots\!71}a^{22}+\frac{47\!\cdots\!04}{34\!\cdots\!71}a^{21}+\frac{10\!\cdots\!21}{34\!\cdots\!71}a^{20}-\frac{17\!\cdots\!61}{34\!\cdots\!71}a^{19}+\frac{78\!\cdots\!83}{34\!\cdots\!71}a^{18}+\frac{19\!\cdots\!93}{34\!\cdots\!71}a^{17}-\frac{26\!\cdots\!67}{34\!\cdots\!71}a^{16}+\frac{39\!\cdots\!73}{34\!\cdots\!71}a^{15}+\frac{25\!\cdots\!69}{34\!\cdots\!71}a^{14}-\frac{22\!\cdots\!89}{34\!\cdots\!71}a^{13}-\frac{66\!\cdots\!02}{34\!\cdots\!71}a^{12}+\frac{26\!\cdots\!81}{34\!\cdots\!71}a^{11}-\frac{14\!\cdots\!96}{34\!\cdots\!71}a^{10}-\frac{53\!\cdots\!99}{34\!\cdots\!71}a^{9}+\frac{23\!\cdots\!93}{34\!\cdots\!71}a^{8}-\frac{18\!\cdots\!28}{31\!\cdots\!53}a^{7}+\frac{15\!\cdots\!16}{34\!\cdots\!71}a^{6}+\frac{18\!\cdots\!86}{34\!\cdots\!71}a^{5}-\frac{16\!\cdots\!23}{34\!\cdots\!71}a^{4}+\frac{31\!\cdots\!63}{34\!\cdots\!71}a^{3}+\frac{13\!\cdots\!27}{17\!\cdots\!09}a^{2}-\frac{27\!\cdots\!83}{94\!\cdots\!11}a-\frac{23\!\cdots\!49}{46\!\cdots\!67}$, $\frac{15\!\cdots\!22}{34\!\cdots\!71}a^{41}-\frac{38\!\cdots\!04}{34\!\cdots\!71}a^{40}+\frac{45\!\cdots\!68}{34\!\cdots\!71}a^{39}+\frac{64\!\cdots\!47}{17\!\cdots\!09}a^{38}-\frac{29\!\cdots\!61}{34\!\cdots\!71}a^{37}+\frac{32\!\cdots\!66}{34\!\cdots\!71}a^{36}+\frac{39\!\cdots\!45}{34\!\cdots\!71}a^{35}-\frac{96\!\cdots\!51}{34\!\cdots\!71}a^{34}+\frac{92\!\cdots\!82}{34\!\cdots\!71}a^{33}+\frac{70\!\cdots\!29}{34\!\cdots\!71}a^{32}-\frac{16\!\cdots\!43}{34\!\cdots\!71}a^{31}+\frac{14\!\cdots\!54}{34\!\cdots\!71}a^{30}+\frac{73\!\cdots\!86}{34\!\cdots\!71}a^{29}-\frac{17\!\cdots\!11}{34\!\cdots\!71}a^{28}+\frac{66\!\cdots\!60}{17\!\cdots\!09}a^{27}+\frac{48\!\cdots\!47}{34\!\cdots\!71}a^{26}-\frac{11\!\cdots\!45}{34\!\cdots\!71}a^{25}+\frac{68\!\cdots\!47}{34\!\cdots\!71}a^{24}+\frac{20\!\cdots\!70}{34\!\cdots\!71}a^{23}-\frac{45\!\cdots\!92}{34\!\cdots\!71}a^{22}+\frac{21\!\cdots\!37}{34\!\cdots\!71}a^{21}+\frac{55\!\cdots\!38}{34\!\cdots\!71}a^{20}-\frac{11\!\cdots\!81}{34\!\cdots\!71}a^{19}+\frac{35\!\cdots\!15}{34\!\cdots\!71}a^{18}+\frac{10\!\cdots\!68}{34\!\cdots\!71}a^{17}-\frac{17\!\cdots\!63}{34\!\cdots\!71}a^{16}+\frac{12\!\cdots\!03}{34\!\cdots\!71}a^{15}+\frac{15\!\cdots\!30}{34\!\cdots\!71}a^{14}-\frac{14\!\cdots\!04}{34\!\cdots\!71}a^{13}-\frac{45\!\cdots\!38}{34\!\cdots\!71}a^{12}+\frac{15\!\cdots\!22}{34\!\cdots\!71}a^{11}-\frac{87\!\cdots\!61}{34\!\cdots\!71}a^{10}-\frac{45\!\cdots\!36}{34\!\cdots\!71}a^{9}+\frac{13\!\cdots\!35}{34\!\cdots\!71}a^{8}-\frac{13\!\cdots\!24}{34\!\cdots\!71}a^{7}-\frac{75\!\cdots\!25}{34\!\cdots\!71}a^{6}+\frac{10\!\cdots\!72}{34\!\cdots\!71}a^{5}-\frac{11\!\cdots\!61}{34\!\cdots\!71}a^{4}+\frac{17\!\cdots\!13}{34\!\cdots\!71}a^{3}+\frac{86\!\cdots\!99}{17\!\cdots\!09}a^{2}-\frac{16\!\cdots\!02}{94\!\cdots\!11}a-\frac{43\!\cdots\!76}{46\!\cdots\!67}$, $\frac{73\!\cdots\!39}{34\!\cdots\!71}a^{41}+\frac{40\!\cdots\!47}{34\!\cdots\!71}a^{40}+\frac{55\!\cdots\!10}{34\!\cdots\!71}a^{39}+\frac{31\!\cdots\!53}{17\!\cdots\!09}a^{38}+\frac{39\!\cdots\!56}{34\!\cdots\!71}a^{37}+\frac{34\!\cdots\!30}{34\!\cdots\!71}a^{36}+\frac{20\!\cdots\!96}{34\!\cdots\!71}a^{35}+\frac{15\!\cdots\!05}{34\!\cdots\!71}a^{34}+\frac{86\!\cdots\!79}{34\!\cdots\!71}a^{33}+\frac{36\!\cdots\!42}{34\!\cdots\!71}a^{32}+\frac{31\!\cdots\!97}{34\!\cdots\!71}a^{31}+\frac{10\!\cdots\!93}{34\!\cdots\!71}a^{30}+\frac{38\!\cdots\!77}{34\!\cdots\!71}a^{29}+\frac{37\!\cdots\!88}{34\!\cdots\!71}a^{28}+\frac{32\!\cdots\!34}{17\!\cdots\!09}a^{27}+\frac{24\!\cdots\!18}{34\!\cdots\!71}a^{26}+\frac{27\!\cdots\!75}{34\!\cdots\!71}a^{25}+\frac{10\!\cdots\!98}{34\!\cdots\!71}a^{24}+\frac{96\!\cdots\!94}{34\!\cdots\!71}a^{23}+\frac{12\!\cdots\!06}{34\!\cdots\!71}a^{22}-\frac{80\!\cdots\!68}{34\!\cdots\!71}a^{21}+\frac{21\!\cdots\!98}{34\!\cdots\!71}a^{20}+\frac{35\!\cdots\!41}{34\!\cdots\!71}a^{19}-\frac{49\!\cdots\!39}{34\!\cdots\!71}a^{18}+\frac{22\!\cdots\!91}{34\!\cdots\!71}a^{17}+\frac{60\!\cdots\!20}{34\!\cdots\!71}a^{16}-\frac{95\!\cdots\!29}{34\!\cdots\!71}a^{15}-\frac{47\!\cdots\!04}{34\!\cdots\!71}a^{14}+\frac{58\!\cdots\!94}{34\!\cdots\!71}a^{13}-\frac{11\!\cdots\!14}{34\!\cdots\!71}a^{12}-\frac{29\!\cdots\!70}{34\!\cdots\!71}a^{11}+\frac{31\!\cdots\!11}{34\!\cdots\!71}a^{10}+\frac{19\!\cdots\!97}{34\!\cdots\!71}a^{9}+\frac{83\!\cdots\!96}{34\!\cdots\!71}a^{8}+\frac{43\!\cdots\!53}{34\!\cdots\!71}a^{7}+\frac{78\!\cdots\!61}{34\!\cdots\!71}a^{6}+\frac{17\!\cdots\!79}{34\!\cdots\!71}a^{5}+\frac{36\!\cdots\!15}{34\!\cdots\!71}a^{4}+\frac{65\!\cdots\!89}{34\!\cdots\!71}a^{3}-\frac{37\!\cdots\!68}{17\!\cdots\!09}a^{2}-\frac{78\!\cdots\!58}{94\!\cdots\!11}a+\frac{10\!\cdots\!85}{46\!\cdots\!67}$, $\frac{25\!\cdots\!95}{34\!\cdots\!71}a^{41}-\frac{26\!\cdots\!02}{34\!\cdots\!71}a^{40}+\frac{49\!\cdots\!21}{34\!\cdots\!71}a^{39}+\frac{10\!\cdots\!63}{17\!\cdots\!09}a^{38}-\frac{19\!\cdots\!09}{34\!\cdots\!71}a^{37}+\frac{32\!\cdots\!79}{31\!\cdots\!53}a^{36}+\frac{63\!\cdots\!09}{31\!\cdots\!53}a^{35}-\frac{60\!\cdots\!75}{34\!\cdots\!71}a^{34}+\frac{97\!\cdots\!74}{34\!\cdots\!71}a^{33}+\frac{12\!\cdots\!70}{34\!\cdots\!71}a^{32}-\frac{98\!\cdots\!62}{34\!\cdots\!71}a^{31}+\frac{14\!\cdots\!39}{34\!\cdots\!71}a^{30}+\frac{12\!\cdots\!48}{34\!\cdots\!71}a^{29}-\frac{94\!\cdots\!94}{34\!\cdots\!71}a^{28}+\frac{66\!\cdots\!13}{17\!\cdots\!09}a^{27}+\frac{83\!\cdots\!35}{34\!\cdots\!71}a^{26}-\frac{56\!\cdots\!61}{34\!\cdots\!71}a^{25}+\frac{65\!\cdots\!42}{34\!\cdots\!71}a^{24}+\frac{34\!\cdots\!45}{34\!\cdots\!71}a^{23}-\frac{20\!\cdots\!03}{34\!\cdots\!71}a^{22}+\frac{19\!\cdots\!24}{34\!\cdots\!71}a^{21}+\frac{86\!\cdots\!58}{34\!\cdots\!71}a^{20}-\frac{44\!\cdots\!53}{34\!\cdots\!71}a^{19}+\frac{28\!\cdots\!64}{34\!\cdots\!71}a^{18}+\frac{13\!\cdots\!22}{34\!\cdots\!71}a^{17}-\frac{59\!\cdots\!03}{34\!\cdots\!71}a^{16}+\frac{35\!\cdots\!28}{34\!\cdots\!71}a^{15}+\frac{13\!\cdots\!97}{34\!\cdots\!71}a^{14}-\frac{45\!\cdots\!61}{34\!\cdots\!71}a^{13}-\frac{40\!\cdots\!74}{34\!\cdots\!71}a^{12}+\frac{10\!\cdots\!72}{34\!\cdots\!71}a^{11}-\frac{32\!\cdots\!55}{34\!\cdots\!71}a^{10}-\frac{14\!\cdots\!14}{34\!\cdots\!71}a^{9}+\frac{14\!\cdots\!03}{34\!\cdots\!71}a^{8}-\frac{41\!\cdots\!99}{34\!\cdots\!71}a^{7}+\frac{50\!\cdots\!25}{34\!\cdots\!71}a^{6}+\frac{98\!\cdots\!01}{34\!\cdots\!71}a^{5}-\frac{36\!\cdots\!46}{34\!\cdots\!71}a^{4}+\frac{30\!\cdots\!96}{34\!\cdots\!71}a^{3}+\frac{90\!\cdots\!10}{17\!\cdots\!09}a^{2}-\frac{31\!\cdots\!76}{94\!\cdots\!11}a+\frac{15\!\cdots\!69}{46\!\cdots\!67}$, $\frac{86\!\cdots\!64}{34\!\cdots\!71}a^{41}-\frac{39\!\cdots\!90}{34\!\cdots\!71}a^{40}+\frac{14\!\cdots\!78}{34\!\cdots\!71}a^{39}+\frac{36\!\cdots\!69}{17\!\cdots\!09}a^{38}-\frac{25\!\cdots\!51}{34\!\cdots\!71}a^{37}+\frac{98\!\cdots\!10}{34\!\cdots\!71}a^{36}+\frac{23\!\cdots\!32}{34\!\cdots\!71}a^{35}-\frac{62\!\cdots\!55}{34\!\cdots\!71}a^{34}+\frac{27\!\cdots\!78}{34\!\cdots\!71}a^{33}+\frac{41\!\cdots\!89}{34\!\cdots\!71}a^{32}-\frac{75\!\cdots\!97}{34\!\cdots\!71}a^{31}+\frac{41\!\cdots\!10}{34\!\cdots\!71}a^{30}+\frac{43\!\cdots\!11}{34\!\cdots\!71}a^{29}-\frac{43\!\cdots\!27}{34\!\cdots\!71}a^{28}+\frac{19\!\cdots\!87}{17\!\cdots\!09}a^{27}+\frac{28\!\cdots\!07}{34\!\cdots\!71}a^{26}-\frac{51\!\cdots\!78}{34\!\cdots\!71}a^{25}+\frac{18\!\cdots\!20}{34\!\cdots\!71}a^{24}+\frac{11\!\cdots\!63}{34\!\cdots\!71}a^{23}+\frac{71\!\cdots\!16}{34\!\cdots\!71}a^{22}+\frac{55\!\cdots\!89}{34\!\cdots\!71}a^{21}+\frac{28\!\cdots\!23}{34\!\cdots\!71}a^{20}+\frac{40\!\cdots\!26}{34\!\cdots\!71}a^{19}+\frac{78\!\cdots\!55}{34\!\cdots\!71}a^{18}+\frac{38\!\cdots\!70}{31\!\cdots\!53}a^{17}+\frac{88\!\cdots\!01}{34\!\cdots\!71}a^{16}+\frac{95\!\cdots\!68}{34\!\cdots\!71}a^{15}+\frac{30\!\cdots\!66}{34\!\cdots\!71}a^{14}+\frac{78\!\cdots\!44}{34\!\cdots\!71}a^{13}-\frac{93\!\cdots\!26}{34\!\cdots\!71}a^{12}+\frac{14\!\cdots\!08}{34\!\cdots\!71}a^{11}+\frac{59\!\cdots\!60}{34\!\cdots\!71}a^{10}+\frac{12\!\cdots\!36}{34\!\cdots\!71}a^{9}+\frac{37\!\cdots\!08}{34\!\cdots\!71}a^{8}+\frac{96\!\cdots\!78}{34\!\cdots\!71}a^{7}+\frac{68\!\cdots\!00}{34\!\cdots\!71}a^{6}+\frac{24\!\cdots\!23}{34\!\cdots\!71}a^{5}+\frac{40\!\cdots\!95}{34\!\cdots\!71}a^{4}+\frac{86\!\cdots\!19}{31\!\cdots\!53}a^{3}-\frac{93\!\cdots\!34}{17\!\cdots\!09}a^{2}-\frac{95\!\cdots\!50}{94\!\cdots\!11}a-\frac{23\!\cdots\!99}{46\!\cdots\!67}$, $\frac{10\!\cdots\!74}{34\!\cdots\!71}a^{41}-\frac{13\!\cdots\!04}{34\!\cdots\!71}a^{40}+\frac{20\!\cdots\!54}{34\!\cdots\!71}a^{39}+\frac{45\!\cdots\!05}{17\!\cdots\!09}a^{38}-\frac{10\!\cdots\!73}{34\!\cdots\!71}a^{37}+\frac{14\!\cdots\!04}{34\!\cdots\!71}a^{36}+\frac{28\!\cdots\!21}{34\!\cdots\!71}a^{35}-\frac{32\!\cdots\!68}{34\!\cdots\!71}a^{34}+\frac{39\!\cdots\!96}{34\!\cdots\!71}a^{33}+\frac{50\!\cdots\!85}{34\!\cdots\!71}a^{32}-\frac{53\!\cdots\!69}{34\!\cdots\!71}a^{31}+\frac{57\!\cdots\!15}{34\!\cdots\!71}a^{30}+\frac{53\!\cdots\!75}{34\!\cdots\!71}a^{29}-\frac{52\!\cdots\!79}{34\!\cdots\!71}a^{28}+\frac{25\!\cdots\!28}{17\!\cdots\!09}a^{27}+\frac{34\!\cdots\!73}{34\!\cdots\!71}a^{26}-\frac{31\!\cdots\!89}{34\!\cdots\!71}a^{25}+\frac{23\!\cdots\!98}{34\!\cdots\!71}a^{24}+\frac{14\!\cdots\!53}{34\!\cdots\!71}a^{23}-\frac{11\!\cdots\!86}{34\!\cdots\!71}a^{22}+\frac{64\!\cdots\!08}{34\!\cdots\!71}a^{21}+\frac{35\!\cdots\!46}{34\!\cdots\!71}a^{20}-\frac{26\!\cdots\!57}{34\!\cdots\!71}a^{19}+\frac{69\!\cdots\!99}{34\!\cdots\!71}a^{18}+\frac{57\!\cdots\!39}{34\!\cdots\!71}a^{17}-\frac{34\!\cdots\!92}{34\!\cdots\!71}a^{16}-\frac{54\!\cdots\!65}{34\!\cdots\!71}a^{15}+\frac{58\!\cdots\!43}{34\!\cdots\!71}a^{14}-\frac{22\!\cdots\!37}{34\!\cdots\!71}a^{13}-\frac{19\!\cdots\!38}{34\!\cdots\!71}a^{12}+\frac{46\!\cdots\!59}{34\!\cdots\!71}a^{11}-\frac{13\!\cdots\!28}{34\!\cdots\!71}a^{10}-\frac{39\!\cdots\!18}{34\!\cdots\!71}a^{9}+\frac{57\!\cdots\!61}{34\!\cdots\!71}a^{8}-\frac{30\!\cdots\!62}{34\!\cdots\!71}a^{7}-\frac{26\!\cdots\!75}{34\!\cdots\!71}a^{6}+\frac{44\!\cdots\!44}{34\!\cdots\!71}a^{5}-\frac{23\!\cdots\!28}{34\!\cdots\!71}a^{4}+\frac{11\!\cdots\!38}{34\!\cdots\!71}a^{3}+\frac{10\!\cdots\!55}{17\!\cdots\!09}a^{2}-\frac{12\!\cdots\!97}{94\!\cdots\!11}a+\frac{13\!\cdots\!81}{46\!\cdots\!67}$, $\frac{14\!\cdots\!63}{34\!\cdots\!71}a^{41}-\frac{88\!\cdots\!52}{34\!\cdots\!71}a^{40}+\frac{24\!\cdots\!95}{34\!\cdots\!71}a^{39}+\frac{63\!\cdots\!46}{17\!\cdots\!09}a^{38}-\frac{60\!\cdots\!97}{34\!\cdots\!71}a^{37}+\frac{16\!\cdots\!98}{34\!\cdots\!71}a^{36}+\frac{40\!\cdots\!80}{34\!\cdots\!71}a^{35}-\frac{16\!\cdots\!14}{34\!\cdots\!71}a^{34}+\frac{46\!\cdots\!10}{34\!\cdots\!71}a^{33}+\frac{71\!\cdots\!15}{34\!\cdots\!71}a^{32}-\frac{22\!\cdots\!74}{34\!\cdots\!71}a^{31}+\frac{68\!\cdots\!47}{34\!\cdots\!71}a^{30}+\frac{75\!\cdots\!05}{34\!\cdots\!71}a^{29}-\frac{17\!\cdots\!42}{34\!\cdots\!71}a^{28}+\frac{31\!\cdots\!50}{17\!\cdots\!09}a^{27}+\frac{49\!\cdots\!76}{34\!\cdots\!71}a^{26}-\frac{75\!\cdots\!72}{34\!\cdots\!71}a^{25}+\frac{30\!\cdots\!33}{34\!\cdots\!71}a^{24}+\frac{19\!\cdots\!61}{34\!\cdots\!71}a^{23}-\frac{13\!\cdots\!38}{34\!\cdots\!71}a^{22}+\frac{86\!\cdots\!86}{34\!\cdots\!71}a^{21}+\frac{48\!\cdots\!63}{34\!\cdots\!71}a^{20}+\frac{15\!\cdots\!22}{34\!\cdots\!71}a^{19}+\frac{11\!\cdots\!10}{34\!\cdots\!71}a^{18}+\frac{70\!\cdots\!54}{34\!\cdots\!71}a^{17}+\frac{97\!\cdots\!39}{34\!\cdots\!71}a^{16}-\frac{46\!\cdots\!35}{34\!\cdots\!71}a^{15}+\frac{56\!\cdots\!63}{34\!\cdots\!71}a^{14}+\frac{14\!\cdots\!01}{34\!\cdots\!71}a^{13}-\frac{14\!\cdots\!94}{34\!\cdots\!71}a^{12}+\frac{32\!\cdots\!02}{34\!\cdots\!71}a^{11}+\frac{55\!\cdots\!63}{34\!\cdots\!71}a^{10}+\frac{50\!\cdots\!05}{34\!\cdots\!71}a^{9}+\frac{69\!\cdots\!39}{34\!\cdots\!71}a^{8}+\frac{10\!\cdots\!53}{34\!\cdots\!71}a^{7}+\frac{68\!\cdots\!09}{34\!\cdots\!71}a^{6}+\frac{42\!\cdots\!51}{34\!\cdots\!71}a^{5}+\frac{70\!\cdots\!88}{34\!\cdots\!71}a^{4}+\frac{17\!\cdots\!92}{34\!\cdots\!71}a^{3}-\frac{19\!\cdots\!31}{17\!\cdots\!09}a^{2}-\frac{19\!\cdots\!52}{94\!\cdots\!11}a-\frac{67\!\cdots\!91}{46\!\cdots\!67}$, $\frac{63\!\cdots\!88}{34\!\cdots\!71}a^{41}-\frac{20\!\cdots\!23}{34\!\cdots\!71}a^{40}+\frac{10\!\cdots\!86}{34\!\cdots\!71}a^{39}+\frac{27\!\cdots\!03}{17\!\cdots\!09}a^{38}-\frac{11\!\cdots\!30}{34\!\cdots\!71}a^{37}+\frac{71\!\cdots\!99}{34\!\cdots\!71}a^{36}+\frac{17\!\cdots\!01}{34\!\cdots\!71}a^{35}-\frac{21\!\cdots\!58}{34\!\cdots\!71}a^{34}+\frac{20\!\cdots\!61}{34\!\cdots\!71}a^{33}+\frac{30\!\cdots\!86}{34\!\cdots\!71}a^{32}-\frac{10\!\cdots\!75}{34\!\cdots\!71}a^{31}+\frac{30\!\cdots\!58}{34\!\cdots\!71}a^{30}+\frac{32\!\cdots\!70}{34\!\cdots\!71}a^{29}+\frac{19\!\cdots\!38}{34\!\cdots\!71}a^{28}+\frac{14\!\cdots\!86}{17\!\cdots\!09}a^{27}+\frac{20\!\cdots\!47}{34\!\cdots\!71}a^{26}+\frac{31\!\cdots\!50}{34\!\cdots\!71}a^{25}+\frac{13\!\cdots\!85}{34\!\cdots\!71}a^{24}+\frac{81\!\cdots\!50}{34\!\cdots\!71}a^{23}+\frac{20\!\cdots\!04}{34\!\cdots\!71}a^{22}+\frac{41\!\cdots\!91}{34\!\cdots\!71}a^{21}+\frac{19\!\cdots\!68}{34\!\cdots\!71}a^{20}+\frac{72\!\cdots\!19}{34\!\cdots\!71}a^{19}+\frac{60\!\cdots\!93}{34\!\cdots\!71}a^{18}+\frac{25\!\cdots\!47}{34\!\cdots\!71}a^{17}+\frac{13\!\cdots\!75}{34\!\cdots\!71}a^{16}+\frac{98\!\cdots\!24}{34\!\cdots\!71}a^{15}+\frac{15\!\cdots\!43}{34\!\cdots\!71}a^{14}+\frac{11\!\cdots\!22}{34\!\cdots\!71}a^{13}-\frac{72\!\cdots\!52}{34\!\cdots\!71}a^{12}+\frac{57\!\cdots\!49}{34\!\cdots\!71}a^{11}+\frac{28\!\cdots\!43}{34\!\cdots\!71}a^{10}-\frac{94\!\cdots\!52}{34\!\cdots\!71}a^{9}+\frac{25\!\cdots\!11}{34\!\cdots\!71}a^{8}+\frac{12\!\cdots\!44}{34\!\cdots\!71}a^{7}+\frac{29\!\cdots\!50}{34\!\cdots\!71}a^{6}+\frac{12\!\cdots\!11}{34\!\cdots\!71}a^{5}+\frac{10\!\cdots\!79}{34\!\cdots\!71}a^{4}+\frac{80\!\cdots\!79}{34\!\cdots\!71}a^{3}-\frac{16\!\cdots\!54}{17\!\cdots\!09}a^{2}-\frac{90\!\cdots\!74}{94\!\cdots\!11}a-\frac{12\!\cdots\!13}{46\!\cdots\!67}$, $\frac{73\!\cdots\!22}{34\!\cdots\!71}a^{41}-\frac{77\!\cdots\!87}{34\!\cdots\!71}a^{40}+\frac{12\!\cdots\!98}{34\!\cdots\!71}a^{39}+\frac{30\!\cdots\!42}{17\!\cdots\!09}a^{38}-\frac{57\!\cdots\!98}{34\!\cdots\!71}a^{37}+\frac{87\!\cdots\!40}{34\!\cdots\!71}a^{36}+\frac{19\!\cdots\!42}{34\!\cdots\!71}a^{35}-\frac{17\!\cdots\!90}{34\!\cdots\!71}a^{34}+\frac{24\!\cdots\!03}{34\!\cdots\!71}a^{33}+\frac{34\!\cdots\!94}{34\!\cdots\!71}a^{32}-\frac{28\!\cdots\!67}{34\!\cdots\!71}a^{31}+\frac{35\!\cdots\!31}{34\!\cdots\!71}a^{30}+\frac{36\!\cdots\!05}{34\!\cdots\!71}a^{29}-\frac{27\!\cdots\!37}{34\!\cdots\!71}a^{28}+\frac{15\!\cdots\!83}{17\!\cdots\!09}a^{27}+\frac{23\!\cdots\!46}{34\!\cdots\!71}a^{26}-\frac{16\!\cdots\!37}{34\!\cdots\!71}a^{25}+\frac{14\!\cdots\!87}{34\!\cdots\!71}a^{24}+\frac{97\!\cdots\!32}{34\!\cdots\!71}a^{23}-\frac{58\!\cdots\!18}{34\!\cdots\!71}a^{22}+\frac{39\!\cdots\!82}{34\!\cdots\!71}a^{21}+\frac{24\!\cdots\!56}{34\!\cdots\!71}a^{20}-\frac{12\!\cdots\!24}{34\!\cdots\!71}a^{19}+\frac{41\!\cdots\!85}{34\!\cdots\!71}a^{18}+\frac{38\!\cdots\!28}{34\!\cdots\!71}a^{17}-\frac{15\!\cdots\!10}{34\!\cdots\!71}a^{16}-\frac{37\!\cdots\!11}{34\!\cdots\!71}a^{15}+\frac{36\!\cdots\!69}{34\!\cdots\!71}a^{14}-\frac{87\!\cdots\!14}{34\!\cdots\!71}a^{13}-\frac{12\!\cdots\!50}{34\!\cdots\!71}a^{12}+\frac{26\!\cdots\!99}{34\!\cdots\!71}a^{11}-\frac{54\!\cdots\!36}{34\!\cdots\!71}a^{10}-\frac{11\!\cdots\!45}{34\!\cdots\!71}a^{9}+\frac{37\!\cdots\!52}{34\!\cdots\!71}a^{8}-\frac{13\!\cdots\!20}{34\!\cdots\!71}a^{7}-\frac{35\!\cdots\!11}{34\!\cdots\!71}a^{6}+\frac{28\!\cdots\!48}{34\!\cdots\!71}a^{5}-\frac{11\!\cdots\!99}{34\!\cdots\!71}a^{4}+\frac{77\!\cdots\!52}{34\!\cdots\!71}a^{3}+\frac{34\!\cdots\!51}{17\!\cdots\!09}a^{2}-\frac{83\!\cdots\!28}{94\!\cdots\!11}a+\frac{89\!\cdots\!84}{46\!\cdots\!67}$, $\frac{67\!\cdots\!20}{34\!\cdots\!71}a^{41}+\frac{37\!\cdots\!72}{34\!\cdots\!71}a^{40}+\frac{67\!\cdots\!27}{34\!\cdots\!71}a^{39}+\frac{29\!\cdots\!70}{17\!\cdots\!09}a^{38}+\frac{36\!\cdots\!96}{34\!\cdots\!71}a^{37}+\frac{45\!\cdots\!03}{34\!\cdots\!71}a^{36}+\frac{18\!\cdots\!67}{34\!\cdots\!71}a^{35}+\frac{13\!\cdots\!48}{34\!\cdots\!71}a^{34}+\frac{12\!\cdots\!67}{34\!\cdots\!71}a^{33}+\frac{33\!\cdots\!33}{34\!\cdots\!71}a^{32}+\frac{28\!\cdots\!24}{34\!\cdots\!71}a^{31}+\frac{17\!\cdots\!08}{34\!\cdots\!71}a^{30}+\frac{35\!\cdots\!49}{34\!\cdots\!71}a^{29}+\frac{33\!\cdots\!86}{34\!\cdots\!71}a^{28}+\frac{68\!\cdots\!18}{17\!\cdots\!09}a^{27}+\frac{22\!\cdots\!90}{34\!\cdots\!71}a^{26}+\frac{24\!\cdots\!13}{34\!\cdots\!71}a^{25}+\frac{49\!\cdots\!25}{34\!\cdots\!71}a^{24}+\frac{88\!\cdots\!32}{34\!\cdots\!71}a^{23}+\frac{10\!\cdots\!87}{34\!\cdots\!71}a^{22}+\frac{32\!\cdots\!23}{34\!\cdots\!71}a^{21}+\frac{19\!\cdots\!88}{34\!\cdots\!71}a^{20}+\frac{28\!\cdots\!80}{34\!\cdots\!71}a^{19}-\frac{45\!\cdots\!48}{34\!\cdots\!71}a^{18}+\frac{17\!\cdots\!73}{34\!\cdots\!71}a^{17}+\frac{42\!\cdots\!72}{34\!\cdots\!71}a^{16}-\frac{16\!\cdots\!10}{34\!\cdots\!71}a^{15}-\frac{16\!\cdots\!11}{34\!\cdots\!71}a^{14}+\frac{27\!\cdots\!64}{34\!\cdots\!71}a^{13}-\frac{22\!\cdots\!03}{34\!\cdots\!71}a^{12}-\frac{49\!\cdots\!62}{34\!\cdots\!71}a^{11}-\frac{12\!\cdots\!34}{34\!\cdots\!71}a^{10}-\frac{39\!\cdots\!58}{34\!\cdots\!71}a^{9}-\frac{12\!\cdots\!84}{34\!\cdots\!71}a^{8}+\frac{20\!\cdots\!91}{34\!\cdots\!71}a^{7}+\frac{68\!\cdots\!07}{34\!\cdots\!71}a^{6}+\frac{15\!\cdots\!21}{34\!\cdots\!71}a^{5}+\frac{17\!\cdots\!66}{34\!\cdots\!71}a^{4}-\frac{35\!\cdots\!30}{34\!\cdots\!71}a^{3}-\frac{17\!\cdots\!49}{17\!\cdots\!09}a^{2}-\frac{12\!\cdots\!30}{94\!\cdots\!11}a+\frac{64\!\cdots\!46}{46\!\cdots\!67}$, $\frac{37\!\cdots\!17}{34\!\cdots\!71}a^{41}+\frac{97\!\cdots\!07}{34\!\cdots\!71}a^{40}-\frac{55\!\cdots\!27}{34\!\cdots\!71}a^{39}+\frac{17\!\cdots\!14}{17\!\cdots\!09}a^{38}+\frac{81\!\cdots\!30}{34\!\cdots\!71}a^{37}-\frac{30\!\cdots\!39}{34\!\cdots\!71}a^{36}+\frac{10\!\cdots\!07}{31\!\cdots\!53}a^{35}+\frac{27\!\cdots\!76}{34\!\cdots\!71}a^{34}-\frac{46\!\cdots\!81}{34\!\cdots\!71}a^{33}+\frac{21\!\cdots\!31}{34\!\cdots\!71}a^{32}+\frac{51\!\cdots\!54}{34\!\cdots\!71}a^{31}+\frac{23\!\cdots\!19}{34\!\cdots\!71}a^{30}+\frac{23\!\cdots\!66}{34\!\cdots\!71}a^{29}+\frac{56\!\cdots\!69}{34\!\cdots\!71}a^{28}+\frac{76\!\cdots\!28}{17\!\cdots\!09}a^{27}+\frac{16\!\cdots\!52}{34\!\cdots\!71}a^{26}+\frac{37\!\cdots\!85}{34\!\cdots\!71}a^{25}+\frac{17\!\cdots\!85}{34\!\cdots\!71}a^{24}+\frac{67\!\cdots\!62}{34\!\cdots\!71}a^{23}+\frac{15\!\cdots\!91}{34\!\cdots\!71}a^{22}+\frac{99\!\cdots\!77}{34\!\cdots\!71}a^{21}+\frac{16\!\cdots\!07}{34\!\cdots\!71}a^{20}+\frac{38\!\cdots\!82}{34\!\cdots\!71}a^{19}+\frac{29\!\cdots\!61}{34\!\cdots\!71}a^{18}+\frac{18\!\cdots\!10}{34\!\cdots\!71}a^{17}+\frac{58\!\cdots\!29}{34\!\cdots\!71}a^{16}+\frac{47\!\cdots\!36}{34\!\cdots\!71}a^{15}-\frac{27\!\cdots\!43}{34\!\cdots\!71}a^{14}+\frac{48\!\cdots\!90}{34\!\cdots\!71}a^{13}+\frac{62\!\cdots\!86}{34\!\cdots\!71}a^{12}-\frac{21\!\cdots\!77}{34\!\cdots\!71}a^{11}+\frac{25\!\cdots\!78}{34\!\cdots\!71}a^{10}+\frac{11\!\cdots\!26}{34\!\cdots\!71}a^{9}+\frac{10\!\cdots\!18}{34\!\cdots\!71}a^{8}+\frac{53\!\cdots\!60}{34\!\cdots\!71}a^{7}+\frac{18\!\cdots\!39}{34\!\cdots\!71}a^{6}+\frac{60\!\cdots\!80}{34\!\cdots\!71}a^{5}+\frac{27\!\cdots\!35}{34\!\cdots\!71}a^{4}+\frac{35\!\cdots\!53}{34\!\cdots\!71}a^{3}-\frac{18\!\cdots\!67}{17\!\cdots\!09}a^{2}-\frac{21\!\cdots\!88}{94\!\cdots\!11}a+\frac{67\!\cdots\!61}{46\!\cdots\!67}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 418513668789608050000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{21}\cdot 418513668789608050000 \cdot 1528865}{2\cdot\sqrt{180282079628321418522579756639824623344453525380673158224385384254625263736344592716927}}\cr\approx \mathstrut & 1.37673307318290 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^42 - x^41 + 2*x^40 + 80*x^39 - 73*x^38 + 139*x^37 + 2635*x^36 - 2181*x^35 + 3934*x^34 + 46702*x^33 - 34779*x^32 + 59013*x^31 + 489577*x^30 - 325107*x^29 + 514966*x^28 + 3148122*x^27 - 1839378*x^26 + 2684924*x^25 + 12529404*x^24 - 6257436*x^23 + 8056643*x^22 + 30745048*x^21 - 12383236*x^20 + 11933159*x^19 + 46384476*x^18 - 13840937*x^17 + 3649186*x^16 + 41025120*x^15 - 8138959*x^14 - 9679906*x^13 + 28379769*x^12 - 8357477*x^11 + 3513515*x^10 + 45545418*x^9 - 12952087*x^8 + 8843411*x^7 + 29858262*x^6 - 8807791*x^5 + 14296232*x^4 - 4154414*x^3 - 181830*x^2 + 2389098*x + 733913)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^42 - x^41 + 2*x^40 + 80*x^39 - 73*x^38 + 139*x^37 + 2635*x^36 - 2181*x^35 + 3934*x^34 + 46702*x^33 - 34779*x^32 + 59013*x^31 + 489577*x^30 - 325107*x^29 + 514966*x^28 + 3148122*x^27 - 1839378*x^26 + 2684924*x^25 + 12529404*x^24 - 6257436*x^23 + 8056643*x^22 + 30745048*x^21 - 12383236*x^20 + 11933159*x^19 + 46384476*x^18 - 13840937*x^17 + 3649186*x^16 + 41025120*x^15 - 8138959*x^14 - 9679906*x^13 + 28379769*x^12 - 8357477*x^11 + 3513515*x^10 + 45545418*x^9 - 12952087*x^8 + 8843411*x^7 + 29858262*x^6 - 8807791*x^5 + 14296232*x^4 - 4154414*x^3 - 181830*x^2 + 2389098*x + 733913, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^42 - x^41 + 2*x^40 + 80*x^39 - 73*x^38 + 139*x^37 + 2635*x^36 - 2181*x^35 + 3934*x^34 + 46702*x^33 - 34779*x^32 + 59013*x^31 + 489577*x^30 - 325107*x^29 + 514966*x^28 + 3148122*x^27 - 1839378*x^26 + 2684924*x^25 + 12529404*x^24 - 6257436*x^23 + 8056643*x^22 + 30745048*x^21 - 12383236*x^20 + 11933159*x^19 + 46384476*x^18 - 13840937*x^17 + 3649186*x^16 + 41025120*x^15 - 8138959*x^14 - 9679906*x^13 + 28379769*x^12 - 8357477*x^11 + 3513515*x^10 + 45545418*x^9 - 12952087*x^8 + 8843411*x^7 + 29858262*x^6 - 8807791*x^5 + 14296232*x^4 - 4154414*x^3 - 181830*x^2 + 2389098*x + 733913);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - x^41 + 2*x^40 + 80*x^39 - 73*x^38 + 139*x^37 + 2635*x^36 - 2181*x^35 + 3934*x^34 + 46702*x^33 - 34779*x^32 + 59013*x^31 + 489577*x^30 - 325107*x^29 + 514966*x^28 + 3148122*x^27 - 1839378*x^26 + 2684924*x^25 + 12529404*x^24 - 6257436*x^23 + 8056643*x^22 + 30745048*x^21 - 12383236*x^20 + 11933159*x^19 + 46384476*x^18 - 13840937*x^17 + 3649186*x^16 + 41025120*x^15 - 8138959*x^14 - 9679906*x^13 + 28379769*x^12 - 8357477*x^11 + 3513515*x^10 + 45545418*x^9 - 12952087*x^8 + 8843411*x^7 + 29858262*x^6 - 8807791*x^5 + 14296232*x^4 - 4154414*x^3 - 181830*x^2 + 2389098*x + 733913);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{42}$ (as 42T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 42
The 42 conjugacy class representatives for $C_{42}$
Character table for $C_{42}$

Intermediate fields

\(\Q(\sqrt{-127}) \), 3.3.16129.1, 6.0.33038369407.1, 7.7.4195872914689.1, 14.0.2235879388560037062539773567.1, 21.21.1191446152405248657777607437681912764659201.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.7.0.1}{7} }^{6}$ $42$ ${\href{/padicField/5.14.0.1}{14} }^{3}$ $42$ $21^{2}$ $21^{2}$ $21^{2}$ ${\href{/padicField/19.1.0.1}{1} }^{42}$ $42$ $42$ $21^{2}$ ${\href{/padicField/37.3.0.1}{3} }^{14}$ $21^{2}$ $42$ ${\href{/padicField/47.7.0.1}{7} }^{6}$ $42$ ${\href{/padicField/59.6.0.1}{6} }^{7}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(127\) Copy content Toggle raw display Deg $42$$42$$1$$41$