Properties

Label 2.10.8.1
Base \(\Q_{2}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(8\)
Galois group $F_5$ (as 10T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 5 x^{9} + 15 x^{8} + 30 x^{7} + 45 x^{6} + 55 x^{5} + 55 x^{4} + 10 x^{3} - 25 x^{2} - 5 x + 7\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $10$
Ramification exponent $e$: $5$
Residue field degree $f$: $2$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:None

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.5.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + z^{3} + 1$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$F_5$ (as 10T4)
Inertia group:Intransitive group isomorphic to $C_5$
Wild inertia group:$C_1$
Unramified degree:$4$
Tame degree:$5$
Wild slopes:None
Galois mean slope:$4/5$
Galois splitting model:$x^{10} - 5 x^{9} + 15 x^{8} - 30 x^{7} + 45 x^{6} - 49 x^{5} + 35 x^{4} - 10 x^{3} - 5 x^{2} + 5 x - 1$