Properties

Label 3.15.15.32
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group $C_3^4:C_{10}$ (as 15T33)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 30 x^{14} + 390 x^{13} + 4335 x^{12} + 42192 x^{11} + 175050 x^{10} + 290610 x^{9} + 398844 x^{8} + 395442 x^{7} + 336906 x^{6} + 217809 x^{5} + 112104 x^{4} + 43173 x^{3} + 12150 x^{2} + 2430 x + 243\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[3/2]$

Intermediate fields

3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(6 t^{3} + 6\right) x^{2} + \left(3 t + 6\right) x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2t + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_3^4:C_{10}$ (as 15T33)
Inertia group:Intransitive group isomorphic to $C_3^3:S_3$
Wild inertia group:$C_3^4$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:$[3/2, 3/2, 3/2, 3/2]$
Galois mean slope:$241/162$
Galois splitting model: $x^{15} - 33 x^{13} - 51 x^{12} + 297 x^{11} + 858 x^{10} - 295 x^{9} - 3960 x^{8} - 5676 x^{7} - 544 x^{6} + 10593 x^{5} + 23133 x^{4} + 28576 x^{3} + 20097 x^{2} + 6336 x + 199$ Copy content Toggle raw display